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Abstract

In this thesis, we evaluate and categorize algorithms and methods to identify
communities within graphs and networks purely based on structural proper-
ties. The goal is to describe the theory of the problems and solutions related
to the identification of cohesive groups within graphs and networks. We
apply the discussed algorithms to a random generated graph and a dataset
of of weblogs in six different languages (German, English, French, Italian,
Portuguese and Spanish) and we will analyze and interpret the results.

Based on the results which are gained by pure structural analysis of the
network we try to draw conclusions from analysis of the textual content of
websites within a single group, to reason about the origin of the network
structure. We also try to evaluate if this can be used as some kind of quality
criterion for the found groups in addition to existing quality metrics.
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Chapter 1

Introduction

This chapter provides an overview of the topics that are the subjects of this
thesis. It also presents the motivation and the ideas driving the research
scope of this work as well as the goals and expectations for the results.

1.1 Background

Weblogs (or Blogs) are very popular publishing media in the Web 2.01. They
are used by personal authors or companies as personal diaries, as news jour-
nals, as corporate communication channels, etc. worldwide. The basis of
blogs are the articles which are published as HTML2 web pages. In these ar-
ticles, blog-authors can place links to other websites and weblogs while their
blogs and articles can also be linked from other blogs. This creates a network
of blogs with links between each other. The reason for placing a link to other
blogs are different: Blog authors can be friends and know each other, or
they cite another blog, or they just recommend each other because of similar
topics. It could also be that the blog platform provider automatically places
links between blogs e.g. for marketing purposes, to increase traffic on their
blogs. The structure of this link network of blogs is the basis for this thesis.

1.2 Motivation

We have data sets of popular blogs from six different languages, which have
been already analyzed with respect to popularity [37]. In this thesis, we
will analyze these data with respect to communities (sub-groups) using So-

1http://oreilly.com/web2/archive/what-is-web-20.html
2http://www.w3.org/MarkUp/
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12 CHAPTER 1. INTRODUCTION

cial Network Analysis (SNA). This includes research, implementation and
comparison of different community identification algorithms, assessment of
the results and crosschecking the different languages, searching for cultural
differences.

1.3 Goals

The goal of this thesis is to give an overview of the current state of available
algorithms in order to identify communities within a web-graph of weblogs
based on structural properties of the network.

Goal 1: Define the basic terms and theoretical background about the field
of community identification.

Goal 2: Categorize, analyze and describe a selection of available methods
and algorithms for community identification.

Goal 3: Apply some of those algorithms to available datasets which consist
of a generated random graph with pre-defined community structure
(see Section 4.8), the complete web-graph of the weblogs in six different
languages, and the single language subgraphs and evaluate the results.

Goal 4: Define metrics to measure quality of identified communities.

Goal 5: Based on the results, gained by pure analysis of the link structure
between weblogs, we try to prove our hypothesis that there exists a con-
nection between the identified structural communities and the content
of the weblogs inside a community. We claim that the textual content
and the topics of weblogs are directly related to the communities and
with this thesis. We try to prove that and make it visible.

Basically we try to answer the following questions:

Question 1: Can the available algorithms for community identification find
communities based on the link-structure of weblogs and the datasets
available to us?

Question 2: Can we measure and visualize that?

Question 3: Will that work in practice and does it scale for large real world
datasets?

Question 4: Are structural communities and the content of the contained
weblogs directly related to each other?



Chapter 2

Theoretical Basics

This chapter provides an overview of the topics that are the subjects of this
thesis. It also presents the motivation and the ideas driving the research
scope of this work as well as the goals and expectations for the results.

2.1 Community Identification

Many areas of our daily life like society, politics, biology, physics, computer
science and economics have formed terms like friends, friendships, villages,
towns, political parties and most recently the world wide web where we find
social networks like Facebook1, or forums or web-rings. All these terms refer
to some kind of cohesive subgroup within a larger group of data points,
where the data points can be persons, biological cells, atoms, computers in
a computer network or web-pages in the world wide web.

The points and their connections can be modeled as a graph, which con-
tains vertices and edges. Vertices represent the the points and the edges
represent the connections between the points. The edges can be directed or
undirected and can also be weighted or unweighted. In our example data set
the weblogs represent the vertices and the links from a weblog to another we-
blog represents the edges, which make up a directed graph. The edge-weight
could represent e.g. a cost or a distance between two vertices. Figure 2.1
shows an example of a directed, unweighted graph.

You can see that the term community is not clearly defined [14, p 8] and in
literature you find terms such as clusters, groups, subgraphs, subgroups, sub
networks and partitions, which are often used as a synonym. In this thesis
we try to define a community as a cohesive sub-group within a network.
This can be a group of vertices sharing some common properties or play

1http://facebook.com
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14 CHAPTER 2. THEORETICAL BASICS

similar roles within the graph [14, p 2]. Furthermore, we use the measure
of modularity and conductance to define the term community, which means
that a community has more edges within the community than edges to their
outside world. In this thesis we will use the terms community and cluster to
refer to the same thing, but we clearly distinguish between the latter end the
term partition as described in Section 2.4.5.

Methods of graph theory can now be applied to identify these clusters /
communities within graphs.

The reasons to identify communities vary between different areas of in-
terest. For a telecom provider e.g. it can be useful to identify certain groups
of users to target marketing campaigns at based on their calling patterns
[21, p 9]. In biology it can be useful to “group proteins which have the same
specific function within the cell” [14, p 2]. And in our case of weblogs we
could determine communities which represent related websites which could
be useful e.g. to target specific banner campaigns to websites within a cer-
tain community. It is also possible to derive sociological conclusions from the
communities of different countries for example to visualize the importance
of different topics like cooking, music or politics by identifying clusters of
blogs writing about such topics and to compare their properties (e.g. size,
density of links etc.). It is also possible to derive current trending topics from
identifying clusters over a period of time and how the clusters change over
time. For example in times of an election it is very likely that many blogs
are writing about political topics and also link to each other, and identifying
those clusters is a way to visualize that politics is a trending topic.

After this background information about community identification, the
next Section will give an overview about the basic terms related to graph
theory to form the basis of the later chapters.

2.2 Graph Basics

This section will give a short overview over basic definitions and terms which
are relevant when characterizing graphs and networks. Those terms and
definitions will be used throughout this thesis, thus they are explained here
first.

Graph A graph is a mathematical representation of a network. It consists
of a set of n vertices V and a set of m edges E where n and m represent
the numbers of nodes and edges respectively. Nodes are connected by
edges.

Vertex A vertex is a single point in the graph, also called node.
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Figure 2.1: Example of a graph with 3 communities

Edge An edge is a connection between two vertices, which can be undirected,
directed, weighted and unweighted. Directed means the connection
between two vertices only exists in one way (like a one-way street, from
A to B, but not B to A). Undirected means that the direction does not
matter. The weight e.g. could represent a distance. In unweighted
graphs the weight of every edge is 1.

Neighbor A neighbor is a vertex which is adjacent to another vertex thus
they are connected by an edge. A vertex can have multiple neighbors.

Adjacency Matrix A graph can be represented with the help of an adja-
cency matrix. This is a n · n matrix containing all vertex-pairs of the
graph where the value equals 1 if both vertices are connected by an
edge and 0 if the two vertices are not connected by an edge.

Random Graph A random graph is a graph which was artificially gener-
ated by an algorithm.
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Walk A walk is a sequence of edges in the graph (e.g. A to B to C to A to
B to D). The edges do not need to be distinct. The length of a walk is
the number of edges of the walk.

Random Walk A random walk is a set of vertices which is selected that
you start on a vertex A, then select a neighbor of this vertex at random
(B), then select a vertex out of the neighbors of B (C) and so on. The
resulting sequence of edges is called a Random Walk.

Path A path is a sequence of edges in the graph where each line is distinct
/ unique (e.g. A to B to C to D). This is a stricter definition than a
walk. The length of a path is the number of edges of the walk.

Shortest Path The shortest path between two vertices of a graph is the
path with the least number of edges inside an unweighted graph where
as it is the lowest sum of edge-weights inside a weighted graph.

Cycle A cycle is a path that returns to its own starting point, and can be
of any length (like a path).

k-Cycles A k-cycle is a cycle where k defines the length of the cycle (the
number of edges which make up the cycle).

Bridge A bridge is a line which does not lie on a cycle but connects two or
more cycles.

Diameter The diameter of a graph “is the longest shortest-path between
any two vertices in the graph” [41, p 95].

Density Density is the number of edges in a graph divided by the maximum
possible number of edges (max. possible number of edges = n·(n−1) for
undirected graphs and n·(n−1)

2 ). This metric is only useful to compare
graphs of the same size [41, p 71].

Inclusiveness Inclusiveness “is the number of connected points in a graph
(all nodes minus the isolated nodes) expressed as a proportion to the
total number of points” [41, p 70]. It is a metric for how well con-
nected the graph is. Example: If the graph contains 20-points and 5
isolated vertices (points with no connection to other points), then the
inclusiveness is 0.75.



2.3. CENTRALITY 17

2.3 Centrality

This metric tells how well a vertex or an edge connects the network. Degree,
Closeness and Betweenness are all measures of centrality.

Degree The degree of a vertex is the number of directly connected neighbor-
vertices. For example in an undirected graph, if a vertex has 3 directly
connected neighbors, then it has a degree of 3. In directed graphs one
distinguishes between in-degree and out-degree. E.g a vertex has an
in-degree of 3, if there are 3 incoming edges from 3 direct neighbors.
It has an out-degree of 3 if there are 3 outgoing edges from the vertex
to its neighbors. The degree distribution of a whole graph can be
visualized by a histogram, which shows the degree from 0 - n on the x-
axis, and the number of vertices having that degree on the y-axis. This
is a useful tool for initial inspection of graph properties. For example
a typical real-world web-graph appears to have a so called power-law
degree distribution with many vertices having a low degree and few
vertices with very high degree. An example of a histogram showing a
power-law degree distribution can be found in Figure 4.5.

Closeness / Global Point Centrality Closeness is the degree a partic-
ular vertex is near all other individual vertices. The vertex with the
minimum total distance to all other vertices has the highest closeness.
It can be determined by calculating the sum of the vertex’s distance
to all other vertices. The distance here is the geodesic (shortest path).
The smaller this value the better / more important, because the vertex
is closer to everybody than any other vertex. This can also be a set of
vertices with the same closeness value. For directed graphs there is also
the in-centrality / in-closeness and the out-centrality / out-closeness.
In other words: Closeness is the inverse of the sum of the shortest
distances between each individual vertex and every other vertex in the
network [41, p 83].

Betweenness Betweenness is the “extend to which a particular vertex or
edge lies between the various other points in the graph” [41, p 86]. We
distinguish between three different kinds of vertex and edge between-
ness. A vertex or edge with a high betweenness value can be considered
as important. For example a single road between two cities has a very
high betweenness value as all traffic has to pass through it.

• Geodesic betweenness is the betweenness calculated based on
the number of all-vertex-pair-shortest-paths running through the
vertex or edge under observation [31, p 2].
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• Random-walk betweenness is the betweenness calculated based
on the number of times an all-vertex-pair-random-walker passes
through the vertex or edge under observation.

• Current-flow betweenness “is defined by considering the graph
a resistor network, with edges having unit resistance. If a voltage
difference is applied between any two vertices, each edge carries
some amount of current, that can be calculated by solving Kir-
choff’s equations. The procedure is repeated for all possible vertex
pairs: the current-flow betweenness of an edge is the average value
of the current carried by the edge.” [14, p 24]

The basic idea behind the Random-walk and Current-flow approach
compared to the Geodesic betweenness is that in real-world networks
we do not know if information would always choose the shortest-path,
which would imply that the information has the knowledge about the
shortest optimal path [31, p 3]. Figure 2.2 shows an example of a graph
with geodesic betweenness values on the edges.

2.4 Cohesive Group Concepts

In the area of network analysis and graph theory, there are various concepts of
cohesive groups of vertices, for example components, cores, cliques, clusters
and partitions. The following definitions should help to understand the terms
and their relation to community identification although some of the terms
especially related to cliques and plexes are not used later in this thesis, as we
are more focused on clusters and communities as described in Section 2.4.4.

2.4.1 Components

A component is the simplest of the various sub-graph concepts, which is
the “maximal connected sub-graph”. All of the points of the sub-graph “are
linked to another through path” [41, p 101]. All points can “reach one another
through one or more path” [41, p 101] and there are no path running to points
outside the component. There are several types of components, which we will
describe here.

Strong Component A strong component is a sub-graph where all the edges
“that make up the paths are aligned in a continuos chain without any
change of direction” [41, p 103].
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Figure 2.2: Graph with edge-betweenness values

Weak Component A weak component is a sub-graph where the direction
of the edges is disregarded and “simply the presence or absence of a
connection is taken into account” [41, p 104].

Cyclic Component A cyclic component “is a set of intersection cycles,
connected by those edges or points that they have in common” [41, p
105].

2.4.2 Cores

Core A core is a maximal sub-graph where every vertex is connected to
every vertex in the sub-graph.

k-Core A k-core is a sub-graph based around the degree of vertices. It is a
maximal sub-graph where every vertex is connected to at least k other
vertices. All vertices have a minimum degree of k.
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m-Core A m-core is based around the multiplicity of edges. It is a maximal
sub-graph in which each line has a minimum multiplicity of m [41, p
113]

Core Collapse Sequence The Core collapse sequence is the number of ver-
tices, which will “disappear” in k+1 (when k is increased by 1). This
is also given as a proportion to the total number of vertices, e.g. in a
6 -vertex sub-graph, where 2 vertices would “disappear” when we in-
crease k=2 to k=3, the core collapse sequence would be 2/6 = 0.333
[41, p 111]. The same can also be applied to m-cores where m is in-
creased as edges will be removed and the points, which were connected
through those edges “disappear” [41, p 113].

2.4.3 Cliques and Plexes

A clique “is a sub-set of points in which every possible pair of points is
directly connected by a line and the clique is not contained in any other
clique” [41, p 114].

Diameter The diameter of a clique is the path distance between its most
distant members.

Strong Clique A strong clique in a directed graph is a sub-set of points
where all edges between the points are reciprocated edges (edges, which
have an arrow at both sides).

Weak Clique In a weak clique all edges are treated as if they were recipro-
cated.

n-Clique A n-clique is a maximal and complete sub-graph in which all pairs
of points are directly connected at maximum distance n. For example
a 2-clique is one in which members are connected either directly (at
distance 1) or indirectly at distance 2. n-cliques can be detected by
multiplying the adjacency matrix by itself or using a more efficient
back-tracking algorithm.

n-Clan A n-clan is like the n-clique, but more restrictive. It requires that
the maximum path distance is n but also the diameter of the clique is
no greater than n.

k-Plex A k-plex is a sub-graph where every vertex is connected to at least
n - k other vertices. All vertices have a minimum degree of k. e.g. in
a 6 vertices graph, a 3-plex would be sub-graph where every vertex is
connected with at least 3 other vertices [41, p 118].
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Circle A set of overlapping cliques can be aggregated into circles if they
have more than a certain proportion of their members in common [41,
p 119].

2.4.4 Clusters

A cluster is different than a clique. It is “an area of relatively high density
in a graph” [41, pp 126-127]. In other words, a cluster is a group of vertices,
which have more edges to other vertices within the cluster than to vertices in
other clusters. Clustering is another term, which refers to a set of multiple
clusters. The result of an algorithm is usually a set of multiple clusters, which
then will be referred to as a clustering.

2.4.5 Partitions

A partition is a set of nodes of a graph and a graph can be partitioned
into many partitions. Partitions are characterized by the fact that they are
disjoint (each vertex can only be part of a single partition) and optimally
have equal size. The terms cluster, community and partition are often used
interchangeably and often cause confusion. In this thesis we clearly differ-
entiate between partitions and the other two terms cluster and community.
We refer to partitions only in the context of partitioning of e.g. a network of
PCs, which should be grouped into partitions so that the traffic between the
different partitions is minimized. In contrast to that, when we are talking
about a community or cluster, we do not have the goal to partition the graph
into disjoint groups of equal size, but we are looking for good communities
within the graph. A good community can even be a small group of vertices,
with the properties of clusters as described earlier. We can possibly identify
multiple communities inside a graph but still have lots of vertices, which are
not part of any identified community.

2.5 Cluster Quality Metrics

Once identified, we need some measures to judge the quality of the identified
communities. Some of the metrics described here will be used in the chapter
4 to evaluate the communities we have identified when we applied some of
the algorithms of chapter 3.2 to our random and real-world datasets.

Modularity A very important measure for measuring community-quality
is modularity. It measures the number of community-internal edges
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relative to a so called null-model, which can be a random graph with
the same degree distribution [28, p. 15] or in other words a sub-graph
is a community if the number of internal edges is greater than the
expected number of edges that the same sub-graph had in a null-model
[14, p 12]. Modularity can be considered better the higher this value is
as this means there are more edges than expected inside the cluster and
more edges means higher density, which is a property of a good cluster
according to our definition of clusters in Section 2.4.4. Modularity
is used throughout this whole thesis, and it is also a central part of
many algorithms for community identification. The basic definition of
modularity assumes an undirected graph. But as we are dealing with
directed web-graphs in this thesis (also abbreviated as Mod.), we have
used a modularity definition for directed graphs by [4, 27] found in [14,
p 34 Equation 37], which is shown in Equation 2.1.

Qd =
1

m

∑

ij

Aij −
(
ki

outkj
in

m

)

δ(Ci, Cj) (2.1)

In Equation 2.1 Qd is the modularity for a directed graph, m is the total
number of edges in the whole graph. Aij is an entry from the graph’s
adjacency matrix (1 if the vertex pair is connected by an edge, 0 if not
connected), ki

out is the out-degree of vertex i, kj
in is the in-degree of

vertex j and δ(Ci, Cj) has the value 1 if vertices i and j are inside the
same community, otherwise it has the value 0.

Conductance The conductance c shown in Equation 2.2 of a community is
the number of cut edges (cc) if you cut the community out the whole
graph divided by the number of edges inside the community (ec) [28, p.
3]. The community can be considered better the smaller this value is,
which means the community has very few edges to the rest of the graph
and many internal edges. Conductance also plays a role in the Network
Community Profile Plot (NCP-Plot) (see [28, p. 17] and Section 4.2)
and we will abbreviate in tables with “Cond.”.

c =
cc
ec

(2.2)

Fraction of correctly classified vertices “A vertex is correctly classified
if it is in the same cluster with at least half of its natural partners” [14,
p 77]. We will use the short-form # CCV in this thesis.
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Rand Index The Rand Index r “is the ratio of the number of vertex pairs
correctly classified in both partitions (i.e. either in the same or in dif-
ferent clusters), by the total number of pairs.” [14, p 78] This metric
is useful for comparing the results of two different algorithms e.g. the
clusters identified by the Algorithm by Girvan and Newman 3.3.2 with
the clusters identified by the algorithm by Blondel et. al 3.3.4. The
Rand Index is a value between 0 and 1, where 0 means that the clus-
terings do not match at all and a value of 1 means than the resulting
clusters of both algorithms are equal. A similar metric is the Jaccard
index [14, p 78].

r =
a11 + a00

a11 + a01 + a10 + a00
(2.3)

Equation 2.3 shows the calculation of the Rand Index R where a11 is the
number of pairs of nodes that are in the same cluster in algorithm-1 and
in the same cluster in algorithm-2. a00 is the number of pairs of nodes
that are in different clusters in algorithm-1 and in different clusters in
algorithm-2. a01 is the number of pairs of nodes that are in different
clusters in algorithm-1 and in the same clusters in algorithm-2. a10 is
the opposite of the latter, the number of pairs of nodes that are in the
same cluster in algorithm-1 but in different clusters in algorithm-2 [45]
and [14, p 78].
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Chapter 3

Cluster Algorithmic Theory

3.1 Algorithmic Families

In this section we want to give an overview over several families of algorithms.
Some of the algorithms presented here will be explained in more detail in the
following chapter. For a much more detailed and fine grained classification
of algorithms we recommend the paper by Santo Fortunato [14].

3.1.1 Agglomerative Clustering

The family of hierarchical clustering methods is divided into agglomerative
and divisive clustering methods. Agglomerative methods can be seen as
bottom-up approaches starting from a single vertex, each representing a sin-
gle cluster on their own, which are then iteratively aggregated with other
vertices into larger and larger clusters [41, pp 126-130]. The points are com-
pared for their similarity or distance. Most of the agglomerative clustering
algorithms differ in the different definitions of similarity. An example of sim-
ilarity is in interlocking directorships: Enterprises might be merged into a
cluster on the basis of the number of directors they have in common.

The first step of every agglomerative algorithm is to compute a n · n
matrix X that is called the similarity matrix, containing the similarities of
all vertex pairs. Based on that similarity matrix the algorithm iteratively
merges points into clusters until some kind of stopping criterion is met e.g.
when a given number of clusters has been identified or a quality function
like modularity is optimized [14, p 19]. The results can be visualized in a
dendrogram1.

1http://en.wikipedia.org/wiki/Dendrogram

25



26 CHAPTER 3. CLUSTER ALGORITHMIC THEORY

3.1.2 Divisive Clustering

Divisive clustering methods also belong to the family of hierarchical algo-
rithms. They are a top-down approach and in contrast to agglomerative
clustering we start with the graph as a whole representing a single cluster,
which will be split into smaller sub-sets by removing edges connecting ver-
tices with low similarity (vertices of different clusters). The results are also
hierarchical, can be represented by a dendrogram, and also have the same
disadvantage as other hierarchical methods, which is to determine the hier-
archy level that represents the community structure of the graph. As we can
see later, the algorithm of Girvan and Newman provides a solution to this
problem and will be described in Section 3.3.2.

3.1.3 Partitioning Methods

The purpose of graph partitioning is to divide the graph into groups of ver-
tices of pre-defined size with the goal that the cut-size (the number of edges
between the groups) is minimal, which is in most cases an NP-hard problem
[14, p 17]. In practice this often is a problem in parallel computing where the
number of interaction between the separate CPUs is tried to be minimized.
The partitioning is often achieved by bisecting the graph into two parts. To
separate the graph into more than two partitions this process is repeated
recursively by bisecting each of the two parts again and so on.

There are various graph and data partitioning algorithms like K-Means,
k-clustering, Minimum K-Clustering, k-center and k-median, Spectral Bi-
Section [14], Kernighan-Lin algorithm [25], and all these algorithms require
to pre-define the number of clusters k. For the purpose of community identi-
fication k is not known upfront so graph partitioning methods are not a focus
of this thesis although we will explore Spectral Bi-Section in Section 3.3.3
and METIS in Section 3.3.5 for recursively bisecting the graph to identify
communities.

3.1.4 Spectral Methods

Most methods of spectral clustering were “developed in computer science and
generally focus on data clustering” but can be used for graph clustering as
well [14, pp 41-42]. Spectral clustering is based around the idea of relations
between objects and their similarities and makes heavy use of eigenvectors
of the Laplacian matrix [14, pp 41-42]. The goal is to find groups of similar
objects . Objects inside the same group are similar and objects in different
groups are dissimilar [43, p 2]. It is well known that an ideal partition of a
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graph can be found by solving the minimum cut problem (min-cut) or the
normalized cut (NCut) problem, which is a partition which passes through
those edges of the graph whose weights sum to a minimum [12, p 2]. The
problem is that finding the min-cut or NCut is a NP-hard problem and
spectral clustering is an approximation solution with much lower complexity
while still providing good results.

The main idea behind this approximation is to find the eigenvectors and
eigenvalues of the graph Laplacian. Clustering information can then be ob-
tained from the eigenvectors. More details about this process can be found
in Section 3.3.3.

3.1.5 Multilevel Algorithms

Multilevel Graph partitioning algorithms like METIS are a new class of algo-
rithms with moderate complexity and excellent graph partitions, which are
also faster than e.g. spectral bi-section [23, p 1]. Although this algorithm is
a graph-partitioning algorithm and we said in Section 3.1.3 we will not evalu-
ate those algorithms, we will present the METIS algorithm here, because we
use it in combination with a recursive bi-section approach, which is able to
identify communities of varying size without pre-defining k. What all of the
multilevel algorithms have in common are the 3 phases Coarsening Phase,
Partitioning Phase and Uncoarsening Phase. The idea is to first coarsen a
large graph down to a graph with only a small subset of nodes (e.g. down to
a few hundred nodes) by combining vertices into multi-nodes, because it is
much easier to partition a small graph. Then for this small graph a bi-section
is calculated. For multiple partitions the bi-section is recursively repeated.
After the partitions are created the partitions need to be projected back to
the original phase in the Uncoarsening Phase. In this thesis we have used
the METIS algorithm, which we will describe in Section 3.3.5.

3.2 Analysis of Algorithms

This chapter will first describe how we will analyze the algorithms and what
properties we will examine. We will distinguish between algorithmic proper-
ties and properties of the results. After this introductory part we will start
describing the algorithms based on the properties we have described. Some
of the algorithms will be implemented or applied to our example dataset and
we will analyze and interpret the results. We will try to answer the question
whether the properties of the algorithms found in literature also apply for
the example dataset.
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3.2.1 Algorithmic Properties

Algorithmic properties are all properties of the algorithm before and while it
produces its results.

Type of graphs The different algorithms under analysis do not work on all
types of graphs. For example, there are algorithms that only work on
undirected graphs, but do not work on directed graphs. Some algo-
rithms take the edge-weight into account while others do not take the
weight into account and lead to different results on a weighted graph.
Furthermore, some algorithms have the property that they perform
very well on large graphs but only if the graphs are sparse and they
would fail or have very bad performance characteristics on very dense
graphs. For each algorithm we will test in this thesis we try to account
for this property.

Pre-defined k or dynamic k Some algorithms need the number of clus-
ters or groups to find as an input parameter k. For example the well
known k-Means algorithm needs the number of partitions to be identi-
fied in advance in order to work. Those kinds of algorithms are not well
suited for our purpose of community identification because the normal
case is that the number of communities is not known in advance. So
in this thesis we will focus more on algorithms, which determine the
number of communities automatically. Algorithms with pre-defined k
are generally suited better for graph partitioning, a use-case where k is
known upfront.

Basic idea of the method Every algorithm is usually based on a single or
multiple basic idea, e.g. some algorithms make heavy use of eigenvector
calculations while other algorithms are based on the idea of random
processes like random walks. We will try to examine each algorithm
and find out whether or not we can identify such basic idea. We will
then describe the basic steps of each algorithm and how it works in
a more or less high level manner and we will refer to the accordant
literature for details.

Order of computational and memory complexity The computational
complexity and memory complexity of algorithms is usually given for
the worst-case in the Big-O notation. But the algorithms have different
complexity based on the properties of the graph e.g. complexity can be
much lower if the graph is very sparse (less dense) while complexity is
near worst-case for very dense graphs. We will try to highlight under
which circumstances the algorithms will perform better or not.
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Limitations this is basically a summary of all the other points above, where
we try to summarize where the limitations of different algorithms are
and where their use is limited.

Related algorithms Many algorithms are not the first ones of their kind
but are based on the idea of another algorithm. If that is the case we
will mention the related algorithms and also try to mention extensions
of the algorithm.

3.2.2 Properties of the Results

After having described the algorithmic properties we will describe the prop-
erties of the results. We will continue to use the term cluster for those kinds
of cohesive subgraphs.

disjoint or overlapping clusters Most algorithms will produce disjoint
clusters, which means that every vertex is part of exactly one group.
Other algorithms also produce overlapping clusters where a vertex can
be part of one or more cluster. Algorithms producing overlapping clus-
ters do exist but there are problems with the visualization of the results
because e.g. a dendrogram is not able to display overlapping clusters.

hierarchical or non-hierarchical While some algorithms will segregate
the graph into disjoint partitions where every vertex is part of a sin-
gle partition, it is also possible that the resulting clusters are nested
in a kind of hierarchy. One can imagine this from real world groups
where e.g. a group of close friends are all members of the same class
in the courses, while all courses are held at the same university. So in
this scenario all students of the university form one community. This
community also has sub-communities, the courses and the close friends.
Visually this can be imagined like “zooming into a community” [14, p
90]. states that this can also be a problem when interpreting the re-
sults, because it is hard to find the relevant levels in the hierarchy where
the identified communities “make sense”. The following quote by [14,
p 90] describes that well: “If we consider the human body, we cannot
say that the organization in tissues of the cells is more important than
the organization in organs.”

size of the clusters The clusters identified by the algorithms can have equal
size or varying size.
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3.3 Algorithms

3.3.1 Agglomerative Linkage Methods

As described in Section 3.1.1 the agglomerative methods start at the sin-
gle vertex, each vertex representing a single cluster, and iteratively merge
vertices together into larger cluster. Traditionally there are three basic
approaches, Single Linkage, Complete Linkage and Average Linkage as de-
scribed next.

Method

In Single Linkage Clustering points are merged into a cluster with their near-
est neighbors. Initially the two closest points are merged into a cluster and
later steps merge successively more distant points into clusters. The Single
Linkage method often leads to points being merged into existing clusters and
“it is less likely that one will find as homogenous and compact clusters as it
would have been possible with Complete Linkage method” [41, p 129], which
will be described next.

The general approach of the Complete Linkage is the same as for Single
Linkage, but it measures the similarity of the two clusters by their most
distant members as opposed to the the closest members, thus it is more
likely that it initializes new clusters at early stages in the analysis and it
finds very homogenous and compact clusters [41, p 130].

In contrast to Single Linkage and Complete Linkage for the Average Link-
ing method it is the average instead of minimum or maximum similarity [14,
p 19] that is used. Average Linkage is a compromise between Single Link-
age and Complete Linkage, which is not as sensitive to outliers as Complete
Linkage.

Algorithmic properties

Types of graphs The algorithm can be applied to any type of graph. The
similarity measure chosen impacts the results of the algorithms and is
the central element.

Pre-defined k or dynamic k The number of clusters k is dynamic, which
is one of the advantages of hierarchical clustering but also one of its
limitations, because it is hard to decide wheter the identified clusters
are good ones.
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Complexity O(n2) for Single Linkage and O(n2 · log(n)) for complete and
average linkage [14, p 19]. It mainly depends on how complex the
computation of the similarity measure is.

Limitations It is hard to differentiate between the many partitions found
by the procedure [14, p 19]. We do not know which hierarchy level
represents the “best” community structure of the graph. Stopping
criteria as mentioned above could help in this situation to determine
the quality of clusters in the different hierarchy levels. Furthermore, the
results depend on the specific similarity measure. The fact that vertices
with only a single beighbor are often assigned to different clusters,
which is also mentioned in [14, p 19], does not always make sense. The
major weakness is its bad scalability [14, p 19].

Properties of the results

Disjoint or overlapping clusters within a single hierarchy, clusters are
disjoint, and every vertex belongs to a single cluster.

Hierarchical or non-hierarchical clusters are hierarchical.

Size of the clusters clusters have different sizes.

Related algorithms

Line-link, Adjusted Complete-link and Mahalanobis-link (see [22, p 6]).
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3.3.2 Algorithm of Girvan and Newman

The most popular divisive algorithm according to [14, p 23] is found in [16]
and [34]. Here the edges of the graph are selected based on the measure of
edge centrality or betweenness, which is the number of shortest paths between
all vertex pairs that run along the edge. This measure is an “importance”
measure. E.g. in a street map the edges would represent streets. A street
that is very central and is used very frequently is important and traffic would
collapse if you would remove such an important street. One advantage of this
algorithm is the fact, that a refined version of the algorithm by Girvan and
Newman in 2004 [34] automatically detects the partition with the largest
value of modularity, which helps to answer the question “...how do we know
when the communities found by the algorithm are good ones?”[34, p 7].

As shown in Section 2.3 betweenness can be distinguished into three dif-
ferent kinds: geodesic edge betweenness, random-walk edge betweenness and
current-flow edge betweenness.

Method

As shown in [14, p 23] the algorithm works as follows:

1. Compute the centrality for all edges.

2. Remove edge with largest centrality. In case of ties remove random
edge.

3. Recalculate of centralities on the new graph.

4. Repeat from step 2 until there are no edges to remove any more.

During this process the network will split up into different sets of com-
munities. Thus the results are hierarchical and can be visualized in a den-
drogram. In [3] you can find an interactive animation of this algorithm.

Algorithmic properties

Types of graphs The algorithm can be applied to all types of graphs. Orig-
inally the algorithm works for unweighted graphs, but the calculation
of edge betweenness can be extended so that the edge-weight is taken
into account. This can be done by dividing the edge betweenness by
the weight of the edge.

Pre-defined k or dynamic k In this algorithm k is dynamic, which means
the number of clusters does not need to be pre-defined.
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Complexity The complexity depends on the kind of betweenness measure
chosen. Calculation of geodesic edge betweenness can be calculated in
O(m ·n) or O(n2) for sparse graphs with techniques based on breadth-
first search [7] and [32] mentioned in [14, pp 23-24]. Random-walk edge
betweenness and current-flow edge betweenness in O[(m + n) · n2] or
O(n3) for sparse graphs [14, pp 24]. Besides those exact techniques,
there are attempts for approximation of the betweenness centrality
measure by [5] and [15] to reduce the complexity below the algorithm
by [7]. In written in [15, p 99] “a good approximation takes almost as
much time as an exact calculation” and also [5, p 11] state that “Ap-
proximating the centrality of all vertices in time less than O(n ·m) for
unweighted graphs and O(n · m + n2log(n)) for weighted graphs is a
challenging open problem.”

Limitations The algorithm is quite slow (mainly because of the recalcula-
tion in step 3) and is applicable for sparse graphs up to n ˜ 10k vertices
according to [14, p 24]. This algorithm finds communities if the com-
munities are connected only with very few edges. For very dense graphs
the algorithm tends to produce super-communities containing most of
the vertices (see [6, p 3] and our own results in Section 4.8.4).

Properties of the results

Disjoint or overlapping clusters Originally the algorithm does not find
overlapping clusters [14, p 25], but modified versions of the algorithm
exist, which can identify overlapping clusters e.g. the algorithm by
[38] mentioned in [14, p 25] or the approach named CONGA (Cluster
overlap Newman-Girvan Algorithm) by [20] mentioned in [14, p 25].

Hierarchical or non-hierarchical The communities are hierarchical and
can be represented in a dendrogram.

Size of the clusters Within a hierarchy level, the clusters can have differ-
ent sizes.

Related algorithms

Amodified version by Tyler et al. shows a way to improve speed of calculation
[14, p 24]. Rattigang et al. ([40] mentioned in [14, p 25]) have developed
another fast version of Girvan-Newman that uses an approximation of edge
betweenness values “by using a network structure index” [14, p 25], which
reduces the complexity to O(m).
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3.3.3 Spectral Clustering

As described in Section 3.1.4, Spectral methods are all based on the properties
of the Laplacian matrix of the graph and clustering information is obtained
from the eigenvectors and eigenvalues of this matrix. The graph Laplacian
matrix contains information about the pairwise similarities of all vertices in
the graph and is show in Equation 3.1.

L = D −W (3.1)

In Equation 3.1 D is the Degree Matrix (degree of vertices are the diago-
nal, all other values are 0) and W is the similarity matrix. There are different
kinds of similarity measures represented by the matrix W . In our example of
a web graph a similarity metric could be the geodesic distance between each
vertex pair, or just the information about adjacency with optional weight
information of the edges. More information about similarity measures can
be found in [43, ch 2].

The result of the clustering depends on the chosen measure of similarity.

Method

1. In case there is not a graph, first convert the data points into a graph
(see [43, ch 2.2] for the types of graph e.g. ε-neighborhood graph,
k-nearest neighbor graph, fully connected graph).

2. Create the graph Laplacian matrix L = D −W .

3. Calculate eigenvalues and eigenvectors of L.

4. The smallest eigenvector has eigenvalue = 0.

5. The second smallest eigenvector has values between -1 and 1. Negative
values could be one partition and positive values the other partition.
This vector is called the Fiedler Vector.

6. variant #1

(a) bisect the Fiedler vector into two partitions. Either divide the
vector into positive and negative values or use the median of the
values for the bisection (also called the median cut) [9, p 1]. This
is what we

(b) repeat the bi-section recursively with each partition until a stop-
ping criterion is met.
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7. variant #2

(a) Create a new matrix X “by stacking the eigenvectors of L in
columns” [35, p 2].

(b) (optionally) create new matrix Y by normalizing X so that each
row of X has unit length [35, p 2].

(c) Run k-means over Y the k-smallest eigenvectors AFTER the small-
est eigenvector, corresponding to the k smallest eigenvalues.

(d) The result are k clusters.

(e) One can now continue and recursively apply the algorithm to the
found clusters [12, p 3] until a stopping criterion is met. A stop-
ping criterion could be e.g. less than p nodes per partition [17, p
12].

Random Walks perspective

Spectral clustering can also be described based on the idea of random walks
on the similarity graph [43, p 14]. In this approach, we do not create the
graph Laplacian, but we create a matrix P that contains probability infor-
mation of a random walker over the vertices.

P = D−1 ·W (3.2)

P is a matrix derived by dividing the similarity matrix by the degree
matrix. Each data point is the probability of a random walker, currently
being on vertex i to jump to vertex j. The idea is that a random walker
stays longer within a cluster and seldom jumps between clusters [43, p 14].
The described procedure of finding the eigenvectors is the same as above, with
one exception: If we use matrix P instead of L, we look for the k largest
eigenvectors of P to identify the cluster. That means in contrast to the
description of spectral clustering earlier, we look for the k largest eigenvectors
of P to identify the cluster, instead of the k smallest eigenvectors smallest
eigenvectors of L.

Algorithmic properties

Types of graphs Spectral clustering can be applied to both, undirected
and directed graphs, as well as unweighted and weighted graphs (see
[14, p 43] and [43, p 3]). But as mentioned in [29, p 1] the algo-
rithm assumes and undirected graph thus a directed graph needs to be
converted to a undirected graph first. But this conversion also has a



36 CHAPTER 3. CLUSTER ALGORITHMIC THEORY

disadvantage described in [29, p 1]: “These methods have the disad-
vantage that in many cases a clustering that is present in the original
asymmetric matrix becomes partially or completely invisible after sym-
metrization...”. How to to approach spectral clustering with directed
graphs is discussed in [29].

Pre-defined k or dynamic k k needs to be predefined upfront when using
k-means clustering at the end of the process. For the recursive bi-
section approach k does not need to be predefined.

Complexity There are multiple algorithms and derivations falling into the
category of spectral clustering. Each of them have different computa-
tional complexity. The algorithm’s complexity ranges between O(n3)
(Alves) , O[K · t · (n · log(n) +m)] to O(n ∗ log(n)) (power method by
Golub and Loan, 1989) mentioned in [14, p 43].

Limitations spectral clustering algorithms tend to have problems to cluster
datasets with different scales of size and density [30].

Properties of the results

Disjoint or overlapping clusters Clusters are disjoint. Each vertex be-
longs to one cluster.

Hierarchical or non-hierarchical It depends on whether the algorithms
are applied recursively or not. Normally, the graph is partitioned into
disjoint clusters, but it is possible to recursively apply the algorithm
again on each cluster until some stopping criterion is met.

Size of the clusters The identified clusters have varying size.
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Related algorithms

There are similar algorithms, which differ e.g. in the way the eigenvectors
are calculated.

1. Unnormalized spectral clustering [42]

2. Normalized spectral clustering [35]

3. Power Method [14]

4. Krylov subspace technique [14]

5. Lanczos method [14]
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3.3.4 Algorithm by Blondel et al.

A very fast algorithm, based on the optimization of the modularity was
proposed by [6]. As this algorithm starts at the single vertex level it belongs
to the family of agglomerative clustering. This algorithm has been applied
to to a data set with 2.6 billion nodes of a mobile phone provider and to
a web graph with 118 million nodes and more than one billion links. In
the latter case identification of the communities of these 18 million nodes
took about 152 minutes on a big-opteron 2.2k CPU with 24GB of memory
[6, p 11]. According to [6, p 3] it does not have the disadvantages of similar
greedy methods like the one by [34], which tend to produce unbalanced super-
communities that contain most of the vertices even if the network has no
significant community structure and are also inapplicable for networks with
more than one million nodes [6, p 3]. An implementation of the algorithm is
available1.

Method

First Phase

1. each node i gets assigned a different community

2. for each neighbor j of i we evaluate the gain of modularity that would
take place if i was moved into the community of j.

(a) Node i is then placed into the neighbor’s community where this
modularity is maximal and positive.

(b) If i is negative, i is left in its original community.

(c) This process is repeated for every node until all nodes have been
processed.

“First phase stops when local maxima of modularity is attained. No
further move can improve modularity” [6, p 4]

Second Phase

1. “build a new network whose nodes are the communities found in the
first phase”

2. “links between new nodes are the sum of the weights of the correspond-
ing two communities”. Links between nodes inside the community lead
to self loops.

1http://sites.google.com/site/findcommunities/
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When second phase is completed, start again with First Phase on the
new network just built. At each pass (a combination of First Phase and
Second Phase) the number of meta-communities decreases. The pass-stop
criterion for the process is when there are no more changes (communities
have become stable) and local maxima of modularity is attained.

Algorithmic properties

Types of graphs The algorithms works on all kinds of graphs.

Pre-defined k or dynamic k The number of clusters k is dynamic and
does not need to be pre-defined.

Complexity O(m) according to a comparative analysis of [26] mentioned
in [14, p 80]). “118 million nodes took 152 minutes” [6, p 4] on a
CPU Opteron 2.2k, RAM 24GB. Another article by [19, p 10] states
“The time to run the underlying Blondel algorithm ranged from a few
milliseconds up to ˜ 40 seconds for the million node graph”

Limitations According to [6, p 4] the main limitations is memory capacity
of RAM rather than computational complexity.

Properties of the results

Disjoint or overlapping clusters The clusters within one hierarchy-level
are disjoint.

Hierarchical or non-hierarchical The clusters are hierarchical. The num-
ber of levels depend on the size of the graph until communities become
stable. In our tests we experienced a maximum of three levels.

Size of the clusters According to [6, p 3], they have introduced “tricks in
order to balance the size of the communities being merged”, which leads
to the assumption that the communities are balanced. That does not
mean that the communities have equal size but as mentioned earlier
the algorithm avoids producing super-communities containing most of
the vertices [6, p 3].

Related algorithms

Algorithms by [11], [39] and [44]
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3.3.5 METIS - Multilevel Graph Partitioning

As shown in Section 3.1.5 multilevel algorithms like METIS consist of the
3 phases Coarsening Phase, Partitioning Phase and Uncoarsening Phase,
which will be described next.

Method

Coarsening Phase Graph is coarsened down to a few vertices by combining
vertices into “multinodes”. the new edge weights are the sum of the
combined original edges. intermediate results are a sequences of smaller
graphs G1, G2...Gm

Partitioning Phase then the bisection of the coarsened graph is computed,
where each partition contains half of the original graph. This step can
be repeated recursively by dividing every bi-partition again into a bi-
partition until the amount of desired partitions is obtained [24, p 2].

Uncoarsening Phase typically consists of two steps: Projection of the par-
tition of the coarser graph towards the original graph and then a re-
finement (or relaxation) process [10, p 6]. The purpose of refinement
is “to select two subsets of vertices, one from each part such that when
swapped the resulting partition has smaller edge-cut.” [24, p 5]. There
are different refinement algorithms such as Kernighan-Lin Refinedment
(KLR), Greedy Refinement (GR), Boundary Refinement (BR) (men-
tioned in [24, p 5] or the Fiduccia-Mattheyes (FM) Refinement (by [1]
mentioned in [10, p 7])

One property of the method is that the “edge-cut of the partition in the
coarser graph will be equal to the edge-cut of the same partition in the finer
graph” [24, p 3].

Regarding the coarsening phase there are different coarsening schemes.
Strict and weighted aggregations [10, p 5] SAG and WAG respectively. SAG
is simpler as each node belongs to one aggregate and the aggregates are dis-
joint. WAG is more complex as “each node can be divided into fractions and
different fractions belong to different aggregates” [10, p 5] which makes the
uncoarsening phase more difficult.

The collapsing idea of the coarsening phase can be described in terms of so
called matchings. “A matching of a graph, is a set of edges, no two of which
are incident on the same vertex” [24, p 3]. A matching can be constructed by
different methods which are Random Matching (RM), Heavy Edge Matching
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(HEM), Light Edge Matching (LEM) or Heavy Clique Matching (HCM) as
described in [24, pp 3-4].

The following describes the coarsening phase using Random Matching
and Heavy Edge Matching.

Coarsening phase using RM Algorithm similar as described in [24, p 3]

1. Vertices are visited in random order.

2. If a vertex v has not been matched yet, randomly select one of its
adjacent vertices u.

3. If u exists then the edge (v,u) is included in the matching and mark v
and u as being matched

4. Iteratively collapse each pair inside the matching into one.

Coarsening phase using HEM Algorithm similar as described in [24, p
4]

1. Vertices are visited in random order.

2. If a vertex v has not been matched yet, select the edge with the maxi-
mum weight between v and its adjacent vertices u.

3. If u exists then the edge (v,u) is included in the matching and mark v
and u as being matched.

4. Iteratively collapse each pair inside the matching into one.

Algorithmic properties

Types of graphs We could not find any hint in the papers available if those
methods also work on directed graphs directly, but in [2, p 10] the
algorithm was applied on a web-graph (which is directed by nature),
but they first converted it into an undirected graph.

Pre-defined k or dynamic k k needs to be predefined upfront. But in
case the algorithm is used for recursively bisecting the graph, k can be
fixed (k = 2).

Complexity Linear complexity O(E) according to [8, p 18] and [23, p 5].
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Limitations A weakness mentioned by [10, ch 5.1] is that the results of
classical matching-based coarsening schemes are quite unpredictable,
characterized by high standard deviation of the edge-cuts, undesirable
sensitivity to the parameters and other factors.

Properties of the results

Disjoint or overlapping clusters The resulting partitions are disjoint. The
coarsening scheme WAG (Weighted Aggregation) mentioned in [10, p
4, Fig. 3.] shows that the coarsened subsets are not disjoint, as they
contain fractions of vertices in intersections. But this fact will be taken
care of in the uncoarsening phase where those fractions are used. It
can be seen as an intermediate implementation detail. The resulting
partitions are still disjoint.

Hierarchical or non-hierarchical The final results are non-hierarchical,
but the intermediate steps during the coarsening phase are hierarchical.

Size of the clusters The goal of all k-way partitioning algorithms is to
find clusters of nearly equal size. We have not found any hints that the
resulting partitions are very unbalanced. Also in our results discussed
in Section 4.9.2 the algorithm produced partitions of equal size.

Related algorithms

As mentioned in [10, p 8] Multilevel algorithms consist of many algorithmic
parts and they all have the three phases of coarsening, partitioning and
uncoarsening / refinement in common, but we have not found explicit names
of those algorithmic families. Thus, we refer to the papers of [24], [23], [2]
and [10].
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3.3.6 Conclusion

The algorithms presented above were a subset of different algorithms avail-
able for community identification and we have tried to pick one algorithm
out of each algorithmic family. We have described basic properties of the
underlying method and the results. For a much more complete description
of many more algorithms we refer to the work by [14] especially the summary
tables about the algorithmic algorithm’s computational complexity in [14, p
90].

While in this chapter pure theoretical information has been presented, we
have applied some of the presented algorithms to example datasets in order
to get a more practical view in the results in the following Chapter 4.
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Chapter 4

Evaluation

In the following chapter we will evaluate different methodologies we have
applied to analyze the results of different community identification algorithms
on our data sets available.

4.1 Visual Evaluation of Clustering

A first method of evaluating the identified clusters and their quality is a,
what we call Clustering-Link-Matrix-Plot (CLM-Plot). The idea for this
plot came from a presentation (PDF) by Christos Faloutsos [13, p. 50] about
Co-Clustering, but we have not found an existing name for it.

Figure 4.1: Example of a CLM-Plot

Figure 4.1 shows an n · n matrix containing information about the 4
clusters of the random graph described in Section 4.7. Each row and column
represents a cluster. Thus, the diagonal entries represent information about
the cluster itself while all non-diagonal entries describe the links of that
cluster to the other cluster. Each rectangle shows the cluster quality in form
of a grey value. The grey value is calculated by the Equation 4.1:

d = mxy/(nx · ny) (4.1)

45
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In Equation 4.1,mxy is the number of edges running between two clusters,
nx is the number of nodes in cluster-X and ny the number of nodes in cluster-
Y. For the diagonal entries mxy is simply the number of edges within the
cluster. The resulting grey value is calculated by projecting the square root
of d onto a scale of 255 grey values.

While the first CLM-Plot in Figure 4.1 shows 4 nearly “perfect” clusters,
which are separated very well from each other, Figure 4.2 shows a CLM-Plot
of a set of clusters, which are not separated that well.

Figure 4.2: CLM-Plot of a more real-world clustering

Figure 4.2 shows 10 Clusters, which were the result of Blondel Clustering
on the EN-Graph. For example, take the cluster in the lower right corner.
Although it looks dark-grey, we can see that it has many links to the first
two clusters, which can be seen by looking at the lower left and upper right
corner of the plot, which are also dark-grey. This effect shows that these
clusters could actually be merged with the first two clusters as there are lots
of links running between these clusters. It could also be sign for hierarchy
within the clustering. Also the two light-grey areas from upper left to lower
right show clusters with lots of links between each other, which is a sign
that these clusters actually belong together, but they were split up by the
algorithm.

This plot is a powerful tool showing the quality of the clusters identified
by an algorithm and we will use it in the following sections to compare the
clustering results with each other.
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4.2 Network Community Profile Plot

The Network Community Profile Plot (NCP-Plot) shows the cluster-size on
the x-axis and the conductance on the y-axis (see Section 2.5). As con-
ductance is the better the lower its value is, this plot can show at which
cluster-size the clusters are good by determining the lowest values on the
y-axis.
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Figure 4.3: NCP-Plot of the DE-Graph

Figure 4.3 shows the NCP-Plot for the Blondel clustering of the DE graph.
We can see that at a size of 120 vertices and 190 vertices (the lowest points
in the plot) the conductance is best. That means we need to look at the
communities at that given sizes to find good communities. This plot can
help to get a quick understanding of the results of clustering algorithm.

4.3 Min-Cut Plots

Min-Cut plots are a tool we read about in [8, p. 5] for analyzing a graph
and its characteristic properties. The plot is created by recursively bisecting
the graph into equal sized partitions (we have used the METIS algorithm).
For each cut we save the number of edges of the graph / partition before the
cut, and the edge-cut, which was necessary to bisect the graph or partition.
Then, we create a plot where the x-axis shows the number of edges of each
partition and the y-axis shows the ratio of edge-cut to number of edges. This
leads to a plot as shown in Figure 4.4a. In order to get to the plot shown
in Figure 4.4b we average over all points having the same x-coordinate as
described in [8, p. 6].
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[8, p. 6] describes Min-Cut-Plots as a tool to compare synthetic graphs
to real-world graphs. For example, the min-cut plot of a random graph
would result in a straight horizontal line while a real-world graph has more
a structure of our plot in Figure 4.4 although our min-cut plots do not have
the “lip” described in [8, p. 11].
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Figure 4.4: Min-Cut plots ALL-Graph

This plot can be used to analyze how good a graph can be partitioned
by looking for local minima in the plot, which are points of “good” cuts. By
looking at the corresponding number of edges you could derive the related
clusters (clusters, which have the accordant number of edges). This plot
can basically help to get an understanding of the graph under observation.
Although described here, we have not used this min-cut plots any further to
evaluate the cluster results despite our initial intention to do so, as we have
found NCP-Plots to be more useful for this purpose.

4.4 Top-10 Tables

Top10 tables are another tool we have developed and use in this thesis to
evaluate the results of the algorithms. They show the clusters sorted by
modularity, conductance and number of correctly classified vertices. Those
tables are especially helpful dealing with hierarchical clustering results, be-
cause the tables can show the best 10 results over multiple hierarchy levels.
This has helped to answer the question of “What are the best communi-
ties of the algorithm under observation?” and also “At which level are the
best communities in a hierarchical clustering?”. It also helps to compare
the results of different clustering algorithms as it enables us to compare the
best results of the algorithms and say “Algorithm A best clusters have much
better modularity than the best clusters of algorithm B”.
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4.5 Rand Index Matrix

We have already described the Rand Index as a metric for comparing two
different clusterings which could be the clusters of two different algorithms on
a single hierarchy level. Our goal was to get an understanding how similar
the clustering algorithms are to each other and we tried to use the Rand
Index for that purpose. We did this by simply creating an n ·n matrix where
rows and columns consist of the algorithms under observation with the Rand
Index as the value. It is important to note that the Rand Index only makes
sense to compare disjoint clusters on a single hierarchy level where all vertices
of a graph are part of at least one cluster.

4.6 Cluster Similarity Matrix

The cluster similarity matrix is a way to compare a set of clusters with the
results of different algorithms and to figure out the algorithm producing the
most similar cluster to the cluster under observation. Most similar is the
clusters, which has most of the blogs in common with the cluster it is being
compared with. The driving question behind is: “Which other algorithm
produces similar cluster as the current algorithm under observation?”

The matrix has the following anatomy: The rows contain the clusters
(including number of blogs) of the algorithm under observation. The columns
contain the other algorithms. The process then iterates through every pair
of row-cluster to algorithm and tries to identify the best-matching clusters
out of the clusters belonging to the algorithms in the columns. Each cell
contains three values: cb / r / size

• r - ratio of fractions of common blogs

• cb - number of common blogs

• n1 - size (number of blogs) of the cluster under observation (row)

• n2 - size of the best matching cluster (column)

The r-value is calculated with the Equation 4.2.

r =
cb

n1
· cb
n2

(4.2)

The value of r lies between 0 and 1. A value of 1 means that there is
a similar cluster, which is 100% identical (contains the same blogs and is of
the same size). 0 means that a cluster does not match any of the blogs.
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Blondel Spectral METIS

politics economy news (137) 80/0.107/436 81/0.052/918 74/0.174/230
cooking food recipes (24) 9/0.027/123 6/0.013/115 8/0.023/115

Table 4.1: Example Cluster Similarity Matrix

Table 4.1 shows an example of a Cluster Similarity Matrix for two clus-
ters of a clustering compared to 3 algorithms. The table can be read as
follows: For the cluster politics economy news containing 137 nodes there
exists a similar cluster found with the Blondel algorithm, which has 80 blogs
in common of 436 blogs. There is also a similar cluster found with Spectral
Clustering having 81 common blogs, but is much larger with 918 blogs. And
there is a third cluster identified with METIS which has 74 blogs in common
of 230 blogs. In terms of the fraction of common clusters over the size of the
similar clusters the METIS clusters is the “best” cluster here, as r has the
highest value of the row (0.174 = (74/137) * (74/230)). For the second row
there is a most-matching cluster found with the Blondel algorithm.

4.7 Description of the Datasets

In this section we will show how we have applied our algorithms to different
datasets that were available to us in order to evaluate the algorithms.

1. A Random Network of 180 Nodes with 4 pre-defined communities (ran-
dom).

2. Blog-Network of 6 languages (ALL-graph) with every language being
a pre-defined community.

3. Blog-Network of the German blogs (DE-Graph), which is a subgraph
of the ALL-graph.

While the first two datasets have pre-defined community structure and
serve as a Ground Truth or Gold standard for our clustering algorithms,
the DE-Graph has no predefined community structure and represents a real-
world use case. In order to verify even the results of the DE-Graph we
have undertaken some more efforts to be able to compare the results against
something. This will be part of Section 4.10.

Table 4.2 shows some basic graph theoretical properties of the available
data sets.
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en es de fr it pt all random

Blogs 8991 5372 1836 3401 2773 3777 26150 180
Links 480577 102837 24031 90472 75421 94968 880499 1448
density 0.005 0.003 0.007 0.007 0.009 0.006 0.001 0.0056
average degree 106.89 38.28 26.15 53.20 54.39 50.28 67.33 16
max. Degree 1983 310 331 506 1271 1198 1984 80
isolated blogs 1 7 0 13 2 14 31 0

Table 4.2: Network Comparison

All of the networks show a power-law degree distribution, which is typical
for web-graphs. That means that there is a high number of blogs with very
low degree and and very small number of blogs having a very high degree
[14, p. 2]. Figure 4.5 shows the degree-distributions of our 3 networks.
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Figure 4.5: Degree Distributions of the data sets.

Another interesting aspect especially about the ALL-graph was the ques-
tion which language has how many links into the other language. Table 4.3
shows an adjacency matrix where you can see that e.g. there are 1228 links
from German blogs to English blogs but only 190 links in the other direction
from English blogs to German blogs. This general pattern is clearly visible
with the exception of France, which is about twice as big as the German
network but has only 550 links to English blogs. This could reflect the re-
ality of the strong attitude of the French towards the preservation of their
own language. This matrix also gives us a rough idea about how well the
clustering algorithms should be able to separate the language space of this
graph as our assumption is that the algorithm should recognize communities
more exact the sparser connected the communities are.

Table 4.3 basically shows the same information being basis for our CLM-
Plot, which also shows information about the links between different clusters
as shown in Figure 4.6.
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de en fr it es pt

de 24031 1228 75 20 41 1
en 190 480577 73 657 184 100
fr 74 550 90472 24 158 56
it 14 1142 50 75424 71 221
es 40 2195 771 65 102838 582
pt 43 2449 285 49 787 94968

Table 4.3: Adjacency matrix of links between different language blogs

Figure 4.6: Example of a CLM-Plot

4.8 Algorithms on Random Graph

A first test case for the algorithms was our generated 180-node random graph
with pre-defined community structure of 4 communities. The method we
have used to generate the graph is based on the Configuration Model by
[33, p 22] but with a modification by my mentor Darko Obradovic. The 4
communities are assigned to each blog with equal probability and have been
given the labels A,B,C,D. Then he introduced a so called community factor
f . In contrast to the configuration model by [33, p 22] the endpoints are not
chosen with equal probability but endpoints within the same community have
f times higher probability than endpoints outside the cluster. This means the
higher the community factor is, the less links are running between clusters
but more inside the cluster. For our example we have used a community
factor f = 7

The result is a random graph with 4 communities it also has a power-
law degree-distribution as shown in Figure 4.5 and the following community
properties shown in Table 4.4.

The CLM-Plot of the 4 communities is shown in Figure 4.7. There we
can see that the 4 clusters shown on the diagonal entries are darker than the
rest, which means that they have a high density. But we can also see that
the other non-diagonal fields are more grey than white, which means that the
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ID Cluster Mod. Cond. # CCV # blogs

429 A 0.098 1.126 41 (93.18 %) 44
430 B 0.108 1.055 44 (88 %) 50
431 C 0.086 1.302 34 (82.93 %) 41
432 D 0.091 1.293 40 (88.89 %) 45

Table 4.4: Properties of communities in the random graph.

clusters still have lots of links between them. Later in this chapter, we will
see that this can be problematic for some algorithms e.g. Edge-Betweenness
Clustering in Section 4.8.4.

Figure 4.7: CLM-Plot of pre-defined clusters of the Random Graph

In the following sub sections we are going to apply the algorithms to the
random graph and will discuss the results.

4.8.1 Blondel

First we have applied the algorithm by [6] as described in Section 3.3.4. with
generally good results. The algorithm has correctly identified the 4 pre-
defined communities almost absolutely correct. As the algorithm produces
hierarchical results until the clusters converge against an optimal modular-
ity value the final and best clusters could be found at Level 2 (Level 0 -2)
shown in Table 4.5. The last column shows how many vertices of each pre-
defined community (A,B,C,D) are inside each cluster as well as the metrics
modularity, conductance and Number of correctly classified vertices.

We can see that the metrics are very close to the metrics of our Ground
Truth shown in Table 4.4.

Figure 4.8 shows the CLM-Plot, which - to no surprise - almost equals
the plot of the ground truth shown in Figure 4.7.

We have also tried to run the algorithm with a lower community factor
f = 3, f = 4 and f = 5 and the results were worse the lower the community
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ID Cluster Mod. Cond. # CCV # blogs Cluster Distribution

24 C1 0.087 1.290 36 (85.71 %) 42 A:1 B:1 C:40 D:0
27 C2 0.094 1.238 42 (97.67 %) 43 A:0 B:2 C:1 D:40
26 C3 0.099 1.096 44 (100 %) 44 A:42 B:0 C:0 D:2
25 C4 0.111 1.014 48 (94.12 %) 51 A:1 B:47 C:0 D:3

Table 4.5: Blondel Clusters in Level 2

Figure 4.8: CLM-Plot of Blondel clustering on the random 4-community
random graph.

factor was because more edges are running between clusters the lower the
factor f is. This proves our assumption that the algorithms work better the
fewer edges are running between clusters at least for this algorithm.

4.8.2 METIS

The next algorithm we have applied was METIS as described in Section 3.3.5.
This was done using the METIS library and the pmetis executable. We
applied the algorithm by using it to bisect the graph recursively with k = 2.
We have split the graph in two parts and each bi-section again until we
reach a stopping criterion. In our case we stopped recursion when a bi-
section had fewer than 10 edges. The results were satisfying as all 4 pre-
defined communities were identified almost absolutely correct as you can see
in Table 4.6 and Figure 4.9. As it was also the case for the Blondel algorithm
in Section 4.8.1 METIS did not recognize the communities as good when the
community factor f was smaller.

4.8.3 Recursive Spectral Clustering

The next algorithm we are going to apply to our random data set is Spectral
Clustering as described in Section 3.3.3 to bi-sect the graph at the median
of the Fiedler Vector of the Laplacian Matrix of the graph and repeat the
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ID Cluster Mod. Cond. # CCV # blogs Cluster Distribution

341 C00 #0 0.099 1.096 44 (97.78 %) 45 A:43 B:0 C:0 D:2
342 C00 #1 0.094 1.236 43 (97.73 %) 44 A:0 B:1 C:3 D:40
375 C01 #0 0.086 1.353 35 (77.78 %) 45 A:1 B:5 C:38 D:1
376 C01 #1 0.106 1.066 45 (97.83 %) 46 A:0 B:44 C:0 D:2

Table 4.6: Clusters in Level 1 (after 2 bi-sections).

Figure 4.9: CLM-Plot of METIS Bi-Section on the random 4-community
random graph.

process recursively until we meet a stopping criterion. In this case we have
stopped after 10 bi-sections or when a bi-section had <= 10 nodes.
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Figure 4.10: Spectral Plot of random Graph and Toy-Graph

Figure 4.10 shows the plot of the Fiedler Vector of the Laplacian matrix
of the random graph and for the toy-graph shown earlier in Figure 2.1. If
we compare two plots we notice that in the toy-graph plot 4.10b shows three
clearly plateaus where each plateau represents a community and bisecting
this plot would reveal those three communities after 2 bi-sections. In con-
trast to that, in the plot of the random graph 4.10a we do not see such
obvious plateaus. This is also the reason why the results are not as good
as with the Blondel algorithm in Section 4.8.1 or METIS in Section 4.8.2.
Bisecting this plot just cuts it into half but as the cut is the median we do
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not cut at an optimal point so that both partitions contain nodes of the other
community. This effect can be made visible in Table 4.7, which shows that
each identified cluster after 2 bi-sections contains multiple nodes of more
than one community, e.g. Cluster C2 #0 contains 10 nodes of Community
A, 16 nodes of community C, and 10 nodes of community D.

Cluster Mod. Cond. # CCV #blogs Cluster Distribution

C1 #0 0.168 2.074 26 (57.78 %) 45 A:6 B:23 C:3 D:13 E:0
C1 #1 0.062 5.072 4 (8.89 %) 45 A:21 B:8 C:4 D:12 E:0
C2 #0 0.036 6.909 5 (11.9 %) 42 A:10 B:6 C:16 D:10 E:0
C2 #1 0.036 6.527 2 (4.17 %) 48 A:7 B:13 C:18 D:10 E:0

Table 4.7: Spectral Clustering: 4 Communities at level 1 (after two bi-
sections)

Figure 4.11: CLM-Plot Random graph at level 1

Figure 4.11 also makes those poor results visible as the diagonal entries
are clearly brighter than the other entries, which means that the communities
itself are very sparse and not very cohesive but have lots of links to other
communities. There is one interesting aspect though: Cluster C1 #0 has a
modularity value of 0.168. This value is clearly higher than the modularity
of any of the pre-defined communities shown in Table 4.4. This is surprising
as Cluster C1 #0 clearly consists of nodes of more than one community but
according the modularity it is even more cohesive than any single community.
We can only guess at this time about the cause of this effect. One idea would
be to run a k-core analysis over the random graph and see if one of the k-cores
matches Cluster C1 #0.
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4.8.4 Girvan and Newman

As an implementation of the Edgebetweenness-Clustering algorithm by Gir-
van & Newman we have reused the EdgeBetweennessClustering implementa-
tion of the JAVA JUNG1 Framework, which already uses the faster algorithm
by [7] to compute betweenness centrality.

The Edge Betweenness Clustering by [16] was applied in two different
approaches in our implementation:

• Remove edge with highest edge-betweenness from graph → perform
Weak-Component-Clustering → repeat both steps until no edges to
remove anymore. Each time the Weak-Component-Clustering identifies
more than one cluster we persist the cluster to the database.

• Remove edge from initial graph→ performWeak-Component-Clustering
until we find more than one cluster. If more than one cluster has been
identified recursively repeat the process on each new cluster until there
are no edges to remove any more in each cluster.

ID Cluster Mod. Cond. # CCV # blogs Cluster Distribution

175 C1 #51 0.008 0.441 123 (100 %) 123 A:30 B:34 C:31 D:28
149 C2 #25 6.658E-4 16.0 0 (0 %) 2 A:0 B:0 C:0 D:2

+ 54 1-node clusters

Table 4.8: Girvan and Newman Clustering - Approach #1: Clusters after
1292 removed edges

To our surprise both approaches were not able to separate and recognize
the pre-defined communities as shown in Table 4.8. Both approaches have
basically identified one large cluster containing most of the nodes, while the
rest only isolated nodes. We assume that our random graph is still too dense
for the algorithm to produce good results and we suspect that it would have
worked better if the communities were much better separated with just a
few links between each other. This effect of super-communities containing
most of the nodes, has also been described by [6, p 3] and highlighted as an
advantage of the Blondel et al. algorithm over the algorithm by Girvan &
Newman. This can be see in Figure 4.12, which visualizes the links running
between the 4 communities where the nodes of each community are plotted

1Java Universal Network/Graph Framework - http://jung.sourceforge.net/
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at one side of the square. In contrast to that you see that the toy-graph in
Figure 4.12b can easily split into 3 communities by removing the edges with
betweenness of 48.0 and 32.0.

Another potential problem could be the Weak-Component-Clustering,
thee second step in our algorithm. As we have reused the existing Edge-
BetweennessClustering implementation of the JAVA JUNG Framework this
process was given and we did not change it. But maybe Weak-Component-
Clustering is too strict, as it expects a real separate component to split up
after the edge-removal. In a dense graph, it is not very likely to happen.
This calls for some kind of modification of that process. For example, one
can think about using a bi-section algorithm in favor of Weak-Component-
Clustering, but further research in this direction would go beyond the scope
of this thesis.

Notes on performance

It is also worth mentioning the performance difference of different imple-
mentations. Regarding the DE-network and the IT-network we have tried to
calculate betweenness centrality in three different languages: JAVA, Perl and
C++. For JAVA we have used the JUNG framework, for Perl a framework by
Darko Obradovic1 and for C/C++ the popular tool network analysis toolkit
PAJEK2.

# Vertices # Edges JAVA Perl C++

DE 1836 24031 48s 82s 2s
IT 2773 75421 122s 472s 12s

Table 4.9: Performance differences of programming languages for calculation
of betweenness centrality

Table 4.9 clearly shows that the choice of the programming language has
a crucial impact on the run-time of that algorithm and should be considered
when dealing with larger graphs.

1http://search.cpan.org/̃obradovic/SNA-Network/
2http://vlado.fmf.uni-lj.si/pub/networks/pajek/
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Figure 4.12: Demonstration of edges between clusters in the random graph
and the toy graph. There is much noise between the random graph clusters.
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4.8.5 Summary Algorithms on Random Graph

We can summarize that Blondel and METIS have identified the pre-defined
communities almost correctly. The other algorithms were not able to separate
the pre-defined communities nearly as good as these two algorithms.
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Figure 4.13: NCP-Plot of Random Graph

The NCP-Plot over all clusters and over all hierarchy levels in Figure 4.13
also shows that Blondel and METIS have identified multiple communities
with a conductance value of around 1.0 at size of about 50 nodes, which is an
indicator that at this size there are good communities in the graph. There
are some better communities in terms of conductance at around 100 nodes
size identified by METIS and Spectral Bi-Section but those communities are
just good communities in terms of the conductance metric but not in terms
of our pre-defined Ground Truth.

4.9 Algorithms on the ALL-graph

After having applied the algorithms to our generated mini-random graph with
pre-defined community structure we are going to apply the algorithms to our
real-world graph but we will focus on the clustering of the ALL-graph, which
contains blogs in the six languages. As those 6 languages also represent some
kind of pre-defined community structure - each language represents a single
community - this use case is also a ground truth, which we use to compare
our clustering algorithms with. The goal is to see if the algorithms are able to
separate the ALL-graph into the six language spaces. The challenging aspect
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in this use-case was the large size of the graph compared to the random graph
and to see how the algorithms perform on this real-word example.

4.9.1 Blondel

The advantage of the Blondel algorithm [6] is, that it determines the num-
bers of clusters automatically (k is dynamic). We have used the tool Network
Workbench1 (see[36]) which already includes an implementation of this al-
gorithm. This implementation will generate hierarchical results, which are
in average three levels deep and we can see that the number of identified
clusters converges already at level three, which means modularity cannot be
improved further by an additional iteration. In case the algorithms identify
more than six distinct communities, we will check if each of the identified
communities contains a majority of blogs belonging to a single language. If
most of the clusters are dominated by a single language then this is a proof
that the algorithm was able to separate the language spaces.

Results

This algorithm was the fastest out of all algorithms we have tested especially
on that large graph and has identified a reasonable number of communities
for each language. Table 4.10 shows the number of identified communities
per level for each language including the ALL-graph.

de es en fr it pt all

Level 0 31 37 22 26 26 44 102
Level 1 14 14 15 17 19 30 50
Level 2 13 13 15 16 19 30 49

Table 4.10: Blondel: Number of clusters per language per level

The algorithm has identified 49 clusters inside the ALL-graph at level 2,
although we know that we have only six defined language-communities. We
have continued to analyze whether or not the 6 language clusters are actually
spread across the 49 clusters identified clusters.

As Table 4.10 shows, although the algorithm has identified more than 6
communities, each identified community is dominated by a single language.
That means that the algorithm has properly recognized each language-space,

1http://nwb.slis.indiana.edu/
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Clus. Mod. Cond. # CCV # Blogs Cluster Distribution

C1 0.026 0.085 1831 (98.87 %) 1852 de:1832 en:18 fr:1 pt:1
C7 0.158 0.081 2401 (99.17 %) 2421 en:2420 it:1
C3 0.028 0.286 425 (95.29 %) 446 en:446
C6 0.020 0.157 382 (95.98 %) 398 en:395 fr:1 it:1 pt:1
C 0.141 0.171 3680 (99.06 %) 3715 de:1 en:3710 it:4
C0 0.061 0.252 1600 (92.81 %) 1724 de:1 en:1718 fr:4 pt:1
C9 0.091 0.023 3365 (99.73 %) 3374 en:5 fr:3369
C5 0.006 0.142 161 (95.83 %) 168 en:168
C17 0.001 0.158 44 (97.78 %) 45 en:44 es:1
C14 0.067 0.103 3811 (99.48 %) 3831 en:13 it:4 es:3811 pt:3
C13 0.020 0.149 776 (99.49 %) 780 fr:1 es:779
C11 1.532E-4 0.281 14 (93.33 %) 15 fr:15
C15 0.046 0.046 2565 (99.42 %) 2580 en:7 fr:2 it:2570 pt:1
C2 0.035 0.011 183 (99.46 %) 184 fr:1 it:183
C18 0.010 0.108 447 (99.33 %) 450 en:1 es:448 pt:1
C16 0.008 0.110 321 (98.17 %) 327 de:1 en:1 fr:1 es:324
C8 0.066 0.086 2164 (99.45 %) 2176 en:8 fr:1 it:2 es:2 pt:2163
C10 0.026 0.194 1406 (98.25 %) 1431 en:15 fr:1 it:2 es:5 pt:1408
C12 0.006 0.207 197 (97.04 %) 203 en:19 es:2 pt:182

Table 4.11: Blondel: Number of clusters per language at level 2 (sorted by
language majority)

but has further subdivided each language into more communities within the
same language. We can summarize that at least for the ALL-graph the
algorithm has produced a satisfactory result what is also supported by the
metrics. The #CCV is > 90% in every case, which means each vertex is
inside the same community with at least half of its natural neighbors which
is a proof that the identified vertices are not just randomly assigned to a
community but are very close to each other in the original graph as well,
which is the characteristic a community should have.

Figure 4.14 also gives a good impression of the quality of the clusters at
level 2. The diagonal entries separate from the rest of the entries, which
shows that the clusters do not have many links between each other. This is
a good property for a compact cluster.
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Figure 4.14: Blondel Clustering at Level 2 on the ALL-graph

4.9.2 METIS

The METIS algorithm was applied the same way as it was done for the
random graph and our expectation was that it is also able to separate the 6
languages. We can see in Table 4.12 that there are 8 clusters. Almost every
cluster has a single language majority except cluster C4, which contains 2078
Spanish and 1182 Portuguese blogs.

Clus. Mod. Cond. # CCV #blogs Cluster Distribution

C1 0.056 0.145 99.79% 3266 en:3 es:3261 pt:2
C2 0.178 0.07 99.51% 3266 en:3261 fr:1 it:2 pt:2
C3 0.079 0.11 99.51% 3266 de:913 en:8 it:2 pt:2343
C4 0.067 0.150 97.37% 3265 en:5 es:2078 pt:1182
C5 0.086 0.051 98.44% 3264 de:104 en:48 fr:121 it:2745 es:31 pt:215
C6 0.090 0.027 99.54% 3264 en:3 fr:3259 pt:2
C7 0.132 0.207 97.03% 3264 de:3 en:3242 fr:1 it:14 es:1 pt:3
C8 0.094 0.256 92.19% 3264 de:815 en:2418 fr:15 it:4 pt:12

Table 4.12: METIS Bi-Section: Communities at level 2 (after 3 bi-sections)

After another recursion at level 3 with 16 clusters we can see that now
the results have improved further and the languages are separated much
better across the clusters with each cluster having one majority language.
Especially Cluster C4 was split again and resulted in Cluster C5 and C10,
which demonstrates that the Spanish blogs were split up from the Portuguese
blogs, which now have the majority in cluster C10. The related entries have
been highlighted in Table 4.12 and Table 4.13.
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Figure 4.15: METIS Bi-Section at Level 2 on the ALL-graph

The results got even better in the next iteration at level 4 in a sense that
the languages are separated better with clusters being dominated by a single
language.

Figure 4.16: METIS Bi-Section at Level 3 on the ALL-graph

METIS Bi-Section was able to separate the language clusters quite well,
results improved with every new bi-section. The METIS library for comput-
ing the bi-section is very fast and it does not consume very much of memory.
Thus, this approach works well on large graphs. The algorithms also seems
to work better, the less densely the clusters are connected. A bi-section of
the ALL-graph could be calculated in less than 1s.
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Clus. Mod. Cond. # CCV #blogs Cluster Distribution

C1 0.027 0.307 97.98% 1634 en:2 es:1630 pt:2
C2 0.055 0.181 99.57% 1634 en:3 it:1 pt:1630
C3 0.027 0.242 100% 1633 en:1 it:1632
C4 0.044 0.212 99.82% 1633 en:1 fr:1632
C5 0.036 0.204 95.65% 1633 en:1 es:1631 pt:1
C6 0.070 0.629 94.73% 1633 en:1624 fr:1 it:4 es:1 pt:3
C7 0.135 0.178 99.51% 1633 en:1632 it:1
C8 0.049 0.531 79.3% 1633 en:1629 fr:1 it:1 pt:2
C9 0.026 0.343 96.2% 1632 en:1 es:1631
C10 0.033 0.157 96.45% 1632 en:4 es:447 pt:1181
C11 0.060 0.248 93.69% 1632 de:1 en:1627 fr:2 it:2
C12 0.038 0.465 82.23% 1632 de:814 en:791 fr:13 it:2 pt:12
C13 0.021 0.615 87.62% 1632 de:913 en:5 it:1 pt:713
C14 0.057 0.164 93.99% 1631 de:104 en:47 fr:121 it:1113 es:31 pt:215
C15 0.041 0.265 96.63% 1631 en:2 fr:1627 pt:2
C16 0.044 0.991 82.71% 1631 de:3 en:1618 it:10

Table 4.13: METIS Bi-Section: Partitions at level 3 (after 4 bi-sections)

4.9.3 Recursive Spectral Clustering

Applying spectral clustering was not easy because of its massive memory re-
quirements. We needed a machine with 16GB RAM to be able to compute the
eigenvectors and eigenvalues of the Laplacian matrix of the ALL-graph. For
all other algorithms a machine with 3GB of RAM was sufficient. That maybe
due to the used libraries (JAVA JUNG, JBLAS and COLT) and maybe the
boundary could have been lowered by using more efficient methods to com-
pute the eigenvectors and eigenvalues like the Lanczos algorithm [18] but
those implementations were not available to us and would have gone beyond
the scope of this thesis to implement them manually.

But similar to the application on the random graph the spectral plot of
the Fiedler vector shows that there are no clearly visible plateaus, which
makes it hard to identify communities, just as the results demonstrate. The
algorithm was not able to clearly separate the six languages, not even after 10
recursive bi-sections. During each bi-section some good partitions appeared
e.g. in terms of modularity as we can see in Table 4.14. For example, the
table shows that C0 and C1 are basically the graph cut in two halves and
apparently there is a small cut, which results in good conductance values,
although the six language clusters are not separated at all (C0 → de:883
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Figure 4.17: Spectrum of the Fiedler Vector - ALL-graph

en:4383 fr:1702 it:1476 es:2710 pt:1921 and C1 → de:953 en:4608 fr:1699
it:1297 es:2662 pt:1856). Also at level 5 with Cluster C2 we have a cluster
with 409 nodes (C2 → de:6 en:51 fr:14 it:296 es:26 pt:16). But although it
is the third best cluster in terms of conductance, the number of correctly
classified vertices is very low at 30.56%. This shows the nodes in the cluster
appear not very often within the same cluster together with more than half
of their natural neighbors. In other words: The nodes in the cluster are not
very close together in the original graph.

Cluster Mod. Cond. # CCV # blogs Level

C0 0.209 1.381 8354 (63.89 %) 13075 0
C1 0.206 1.415 7804 (59.69 %) 13075 0
C2 0.016 1.652 125 (30.56 %) 409 5
C3 0.023 2.149 157 (19.22 %) 817 4
C4 0.067 2.820 731 (22.37 %) 3268 2
C5 0.094 2.885 1310 (20.04 %) 6537 1
C6 0.096 2.956 1249 (19.11 %) 6537 1
C7 0.031 3.484 168 (10.28 %) 1634 3
C8 0.049 3.680 454 (13.89 %) 3269 2
C9 0.078 3.704 1169 (17.88 %) 6538 1

Table 4.14: TOP10-Conductance Spectral Bi-Section ALL-graph over all
levels
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If we look at the spectral plot of the Fiedler Vector of level 5 we notice
the two plateaus are more obvious and the first plateau represents C2 in Ta-
ble 4.14. The same cluster can also easily be spotted in the CLM-Plot shown
in Figure 4.18 where the darkest diagonal entry indicates C2 in Table 4.14.

Figure 4.18: CLM-Plot ALL-graph Spectral Clustering Level 5

In summary, Spectral Bi-Section clustering was not able to separate the
six languages and it also consumed lots of memory. Thus, the algorithm is
not the best choice for very large graphs because of the large matrices, which
need to be held in memory. Also, there is lots of room for improvements.
For example, instead of the idea of bisecting the graph we could have used k-
means clustering on the Fiedler-Vector as described in Section 3.3.3 but this
assumes that we define the number of clusters up-front, which is normally
not known in advance, as that is something we want to find out dynamically.

4.9.4 Girvan and Newman

Unfortunately, it was not possible to test the Edge-Betweenness clustering
of Girvan & Newman [16] on the ALL-graph (26150 nodes, 880499 edges)
because of its computational complexity of O(m · n) or O(n2) for sparse
graphs for computing the centrality (geodesic edge betweenness), which also
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needs to be recomputed after each removed edge leading to a total complexity
of O(m2 · n). This process has taken about 8 hours for the DE-graph (1836
nodes, 24031 edges) so it would have taken several months for the ALL-graph.

4.9.5 Summary

To summarize the application of algorithms on the ALL-graph the results are
similar for the random graph in Section 4.8.5. Blondel and METIS were able
to separate the six languages in the resulting clusters. In contrast to that,
Spectral Clustering was not able to separate the languages and the algorithm
of Girvan and Newman could not be applied at all.

4.10 Clustering of the DE-Graph

After we have applied the algorithms to our random and our ALL-graph
ground truth data set we applied the algorithms to the German dataset
(DE-graph). The difference here is that we do not know what we are actually
looking for as we do not have a known community structure. This is a real
world use case.

Thus, we have the problem to verify the results to know whether or not the
identified communities are good or not. Other instruments are the metrics
modularity, conductance and number of correctly identified vertices we have
already used in the tables earlier in this chapter.

But in order to be able to compare the identified communities against
something we have applied an additional method in order to compare the
results of the algorithms against some kind of ground truth.

4.10.1 Manual tagged clusters

In a labor-intensive process we have manually added tags to each blog in
the DE-graph to somehow categorize each blog’s content (e.g. web, music,
cooking...).

The goal of that process is to find out if there is a connection between
content-clusters and structural clusters identified by our algorithms. For
example, supposed we have formed a cluster containing all blogs tagged with
cooking and food. If our assumption is true then our clustering algorithms
must also have identified a cluster containing all or most of the blogs tagged
with the tag cooking and food.

In the following section we will describe our process in order to answer
that question.
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Currently we see three ways how to make use of the tags:

1. Analyze frequency of the manually assigned tags in the DE-clusters
identified by the algorithms. This gives a good overview over the tag
distribution in the clusters and will give a feeling about which tags are
used the most. Example: A cluster containing 90% of all blogs tagged
as “movies”. This process is described in more detail in Section 4.11.

2. Create a Cluster for each tag and calculate modularity, conductance
and number of correctly classified vertices. Our assumption is that such
a tag-cluster having a good modularity value should also be identified
by one of the structural clustering algorithms. This structural cluster
partly should contain a high number of blogs of the tag-cluster. This
should be partly visible from the previous point. We will describe this
process in Section 4.10.1.

3. Grouping of tags. During the manual tagging process there are a lot
of tags, that basically mean the same, or tags that are used together
in many cases. In some cases it makes sense to group those tags and
create clusters containing blogs with those grouped tags. E.g. instead
of creating two separated clusters for food and recipes we can create
a single cluster containing all blogs tagged with food or recipes. This
process will be described in Section 4.10.1.

Creating a Cluster for each blog

In this section we form a cluster for each tag assigned to the blogs. E.g.
there will be a cluster containing all blogs tagged with the word “food” and
another cluster for all blogs tagged with “movies”. The resulting clusters
will be overlapping, which means they will contain partially the same blogs
because there can be blogs tagged with “food” and “movies”, which is totally
possible in reality. This overlapping is not a problem in our case because our
goal is to identify “good” communities rather than partitioning the graph
into disjoint clusters.

Then we have calculated modularity, conductance and number of cor-
rectly classified vertices for every single-tag cluster and produced Top10
tables for each metric because we are not interested in all clusters but in
the “best” clusters in terms of the metrics. Table 4.15 shows the best 10
tag-clusters in terms of their conductance value and Figure 4.19 shows a
CLM-Plot of all tag-clusters.

From the plot in Figure 4.19 we can see that most of the clusters on
the diagonal are not very dark, which means they are not very cohesive and
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Figure 4.19: CLM-Plot DE-Graph - each tag in a cluster



4.10. CLUSTERING OF THE DE-GRAPH 71

Cluster Mod. Cond. # CCV # blogs

personal 0.043 2.815 105 (32.21 %) 326
misc 0.031 3.657 66 (25.48 %) 259
politics 0.010 6.891 11 (9.32 %) 118
web 0.007 8.025 16 (13.01 %) 123
business 0.001 8.076 2 (10 %) 20
swiss 8.939E-4 8.909091 0 (0 %) 10
career 1.658E-4 9.25 0 (0 %) 4
media 0.004 10.226 2 (2.7 %) 74
advertising 8.305E-5 12.0 0 (0 %) 2
socialmedia 0.002 12.694445 1 (1.82 %) 55

Table 4.15: TOP 10 Conductance of single tag clusters DE-graph

dense and the have lots of links to other clusters. Some smaller clusters
like the de politics and de swiss are darker than the rest but are also very
small. Another interesting effect becomes visible in this plot: For example,
the 2 diagonal clusters starting from the upper left corner are brighter than
their linking rectangles, which means that those two clusters have many links
between each other. That could indicate they can potentially be combined
into one cluster. This makes an aspect visible and we are going to investigate
this in Section 4.10.1.

Grouping of tags

As we mentioned earlier, there are blogs tagged with “food” and “recipes”
and in our previous section this would result in two different single-tag clus-
ters that overlap to a greater extend because both tags are related and are
ofter used together. In order to algorithmically determine the tags that qual-
ify to be combined we have tried to come up with the following process.

We created a quadratic co-occurrence matrix for every tag. The value of
each cell c is shown in Equation 4.3:

c = n12/n1 (4.3)

In Equation 4.3, n12 being the number of blogs containing tag1 and tag2
together and n1 is the number of blogs which contain only tag1.

c is a value between 0 and 1. This matrix can be asymmetric because e.g.
“cooking” might only be used in conjunction with “recipes” but “recipes”
can also be used with other tags.
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personal misc web politics society media

personal 0.996 0.584 0.122 0.131 0.113 0.051
misc 0.737 1 0.131 0.069 0.077 0.050
web 0.325 0.276 1 0.105 0.073 0.260
politics 0.364 0.152 0.110 1 0.491 0.067
society 0.435 0.235 0.105 0.682 1 0.058
media 0.226 0.173 0.426 0.106 0.066 0.986

Table 4.16: Subset of a tag-co-occurrence matrix - showing which tags are
often used together

After having created this matrix in Figure 4.16, we will filter this matrix
to only show values having e.g. a c > 0.7. Those tag-pairs are very likely to
be combined or grouped. The value of 0.7 was chosen arbitrarily.

From that list of tags and combinable tag-candidates we have created 16
clusters consisting of single or combined tags, which we have used for fur-
ther analysis. For example, from the co-occurrence matrix we have created
a combined cluster for the tags web and socialmedia as both tags are mostly
used together.

This process was executed manually. At one time we have thought about
automating this process too: The idea was to see the Tag-Co-occurrence-
Matrix in Table 4.16 as a weighted adjacency matrix of tag relationships
with the co-occurrence value being the edge weight. Then the idea was to
use a clustering algorithm to create clusters of combinable tags. But this
was not possible for this thesis because we cannot use a clustering algorithm
in a thesis on clustering algorithms in order to verify clustering algorithms.
Thus, we performed the grouping manually.

So the result of that process was the following list of 16 cluster in Ta-
ble 4.17 for further analysis:

Then for some samples of combined-tag-cluster we tried to identify the
best matching cluster out of the clusters identified by our algorithms con-
taining most of the blogs of that tag-cluster with the help of our Cluster
Similarity Matrix described in Section 4.6.

Table 4.17 shows three sample clusters we have picked randomly.

Observation #1 A best-matching similar cluster for the first cluster seems
to be identified in row 1 with the Blondel algorithm even though this
best-match contains only 9 out of the 24 blogs and this matching
clusters contains a total of 123 blogs. That means that the tagged
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Cluster Mod. Cond. # CCV # blogs

misc personal 0.022 4.507 34 (17.8 %) 191
politics economy news 0.013 5.904 21 (15.33 %) 137
lifestyle art music design 0.005 11.28 4 (4.04 %) 99
tv media advertising 0.004 10.225 2 (2.7 %) 74
music 0.003 15.10 2 (2.9 %) 69
poetry lyric literature journalism 0.002 16.96 0 (0 %) 65
photo 0.001 22.98 0 (0 %) 42
web socialmedia 0.001 19.09 1 (2.5 %) 40
personal photo 0.001 23.72 0 (0 %) 27
cooking food recipes 0.001 23.16 0 (0 %) 24
business career startup 0.001 8.0 2 (9.52 %) 21
traveling 2.753E-4 54.111 0 (0 %) 18
local 5.414E-4 36.058 0 (0 %) 18
sports 3.406E-4 30.666 0 (0 %) 12
women 1.402E-4 65.5 0 (0 %) 10
personal women 7.315E-5 81.5 0 (0 %) 8

Table 4.17: List of combined and single tag clusters

Cluster Blondel Spectral METIS

cooking food recipes (24) 9/0.027/123 6/0.013/115 8/0.023/115
poetry lyric literature journalism (65) 26/0.029/355 34/0.019/918 11/0.062/30
business career startup (21) 5/0.17/7 11/0.006/918 5/0.17/7

Table 4.18: Cluster-similarity for 3 random clusters of combined tags

cooking-blogs are only a minor fraction. But at least we gained the
knowledge that 9 of 24 of all the blogs we have tagged with cook-
ing, food or recipes are found all together in one cluster identified
by the structural algorithms. The error could be due to the fact
that we have tagged only 731 of 1836 total DE-blogs and maybe if
we would have tagged more blogs out of the best-matching cluster
with these tags, the results were clearer. A manual check confirms
this assumption as the best-matching Blondel clusters mainly contains
blogs dealing with the topic cooking what we can see by looking at
the tag-cloud generated from the blog’s RSS-feed. The tags there are
teil,rezept,weinernte,kochen,event,euro,koch,penne,johann,stehen. This
proves that the results of our cluster similarity matrix are useful and



74 CHAPTER 4. EVALUATION

would result in more exact results the better the quality and complete-
ness of the tagging-process is. But even the current result is an indicator
for the existence of a connection between the structural clusters and
their content.

Observation #2 For the third cluster business career startup Blondel and
METIS seems to have identified the same similar cluster. Both clusters
have a total of 7 blogs where 5 of them are blogs from the business ca-
reer startup-cluster. A manual test confirms that both 7-blog clusters
are almost identical with the exception of one blog, which is different
in both clusters. The blogs of these two cluster blogs like are: deutsche-
startups.de, connectedmarketing.de,blog.wiwo.de/gruenderraum, e-commerce-
blog.de, inside.gruenderszene.de, www.handelskraft.de, webregard.de and
http://ecommerce.typepad.com

4.10.2 Conclusion of tag-clustering

Tag clustering was performed as a try to identify the existence of a connection
between the structural clusters and their content. This process - though
labor intensive - has definitely helped to get a better understanding about
the network structure of the DE-graph and the clusters. Creating the tag-
clusters, measuring their modularity and conductance and finally trying to
identify similar clusters was a good way to visually compare the clusters
against each other by also taking the content into account.

But we clearly have to say that this process has its limitations and is
very prone to human errors. First of all: tagging is a manually executed
process. People use different tags for the same thing, or do spelling mistakes.
Another way to extract keywords from the page content could have been
to use external services e.g. like Yahoo’s Query Language API1, which is
able to extract keywords from text automatically. All sorts of these kinds
of errors can distort the results. Another cause for errors was the fact, that
the initial crawl of the blog-network was executed in 2009 (see [37]), which
was the basis for the link structure. Unfortunately the website content of
that initial crawl was not persisted. Thus, we needed to re-crawl the content
again, in order to have content for tagging which we could correlate with the
structural clustering results. The problem is there now is a mismatch between
the source for the initial structure and the assigned tags as the tags are not
for the initially indexed articles, which led to the current link structure, but
they are derived from the content of the blogs today.

1http://developer.yahoo.com/yql/console/
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4.10.3 Automatic Clustering

After having evaluated the tagging-process we have applied the clustering
algorithms to our DE-graph to be able to evaluate the results and compare
it with the results of the tag-clusters.
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Figure 4.20: NCP-Plot of the clustering of the DE-graph.

The NCP-plot in Figure 4.20 shows that Blondel clusters have best con-
ductance values at a clusters size of about 100 and 200 blogs. Also METIS
has identified a good cluster at around 100 vertices and two good clusters at
the size of 450 blogs and 900 nodes. This can also be seen if we look at Ta-
ble 4.19 showing the best cluster in terms of conductance for each algorithm.
This also shows that the tag-clusters (PerTag and CombinedTags) are not as
good as the clusters identified by the algorithms in terms of conductance.

From the high conductance values for the tag-clusters we can tell that the
clusters are not as good as the structural ones. It is also likely a result of the
fact that we have not tagged all 1836 German blogs but only 731 of them.
The EdgeBetweenness clustering results have repeatedly shown to produce
a super-community containing almost all of the vertices, which can be seen
in Table 4.19. That makes this algorithm rather unsuitable for our purposes
as it will be obviously hard to compare such a large cluster with the tag-
clusters, as almost every tag-cluster will be covered inside that large cluster.
The results would be meaningless and that is why an Edge-Betweenness
Cluster does not appear in Table 4.18.
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Cluster Mod. Cond. # CCV # blogs level

Blondel 0.061 0.242 119 (96.75 %) 123 2
METIS 0.0594 0.249 112 (97.39 %) 115 3
EdgeBetweenness 0.024 0.375 1425 (93.02 %) 1532 17367
Spectral 0.204 1.535 600 (65.36 %) 918 0
PerTag 0.043 2.815 105 (32.21 %) 326 0
CombinedTags 0.022 4.507 34 (17.8 %) 191 0

Table 4.19: DE: Best clusters by conductance by algorithm

As a last analysis of the results of the clustering algorithms on the DE-
graph we have used the Rand Index Matrix as described in Section 4.5. One
property of the Rand Index mentioned in this section was that it only makes
sense to use the Rand Index if the clusters of the two cluster-sets to be com-
pared are disjoint and all vertices are assigned to a single cluster. Otherwise
the counts of the Rand Index are not comparable if you compare clusters with
different characteristics. It turned out that this limits the usefulness to use
the Rand Index to compare different sets of communities. In Section 2.4.5
we said that community identification is about identifying good communi-
ties rather than partitioning the graph into disjoint sets. In this chapter
we have seen that these good communities can be found in different levels
of hierarchical clusterings. When creating the Rand Index Matrix you have
decide upfront which levels you want to compare. This decision impacts the
Rand Index, as in each level the vertices are potentially assigned to different
clusters. For demonstration purposes we will show two Rand Index Matrices
of two different scenarios.

Spectral (Level 2) Blondel (Level 2) METIS (Level 2)

Spectral (Level 2) 0.0 0.774 0.868
Blondel (Level 2) 0.0 0.0 0.787
METIS (Level 2) 0.0 0.0 0.0

Table 4.20: DE: Rand Index Matrix for 3 clusterings at level 2

Table 4.20 shows that Spectral Clustering and METIS produce similar
clusters at level 2 as the Rand Index has the highest value in that table.

Table 4.21 shows the Rand Index for the 3 algorithms for different hier-
archy levels. Basically the number of clusters is higher in this table. Blondel
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Blondel (Level 0) Spectral (Level 3) METIS (Level 3)

Blondel (Level 0) 0.0 0.852 0.897
Spectral (Level 3) 0.0 0.0 0.887
METIS (Level 3) 0.0 0.0 0.0

Table 4.21: DE: Rand Index Matrix for 3 clusterings at level 2

has 31 clusters at level 0, and Spectral and METIS have 16 clusters at level 3,
which implies the size of the clusters is smaller. Apparently the Rand Index
value is higher than in Table 4.20. This time Blondel and METIS seem to
have the matching of clusters.

Although the presented facts can reveal interesting facts in general, during
our experiments the Rand Index Matrix was of less value for our evaluation
than we initially thought. A possible improvement could be to calculate
the Rand Index Matrix for all possible permutations of clustering levels and
see were the Rand Index is maximal but this was out of scope from a time
perspective and would have been computationally very complex.

4.11 Explorative Cluster Analysis

While the previous sections where rather algorithmic and have compared
different clusterings with the help of metrics, this section will describe an
experimental approach by analyzing the clusters in a more explorative way.
During the creation of this thesis we often asked ourselves the question “What
are the blogs which form a cluster actually about?”. To answer this question
we have used the idea of a tag cloud, a very common pattern in the blogo-
sphere. A tag cloud can be used to give an overview over a set of articles by
showing the keywords of the articles in a so called “cloud” where some key-
words are printed bigger than others to show their importance or frequency.
This approach looks reasonable for our purpose as well as it let us “zoom”
into a cluster and see more than a couple of numeric metrics only.

Tag cloud based on blog content

In order to be able to render a tag cloud we first got the content from which
we extract the keywords. We have indexed the most recent 10 articles (title
+ content) from every blogs RSS feed and put it inside an index (based
on Apache Lucene). Then for every blog in the index we have extracted
the 10 keywords having the highest Term Frequency - Inverted Document
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Frequency (TF-IDF) value (see [46]). In other words we have extracted the
10 most important keywords for every blog in the cluster. The keyword-
importance-value, the TF-IDF value, was always calculated for each cluster
as the corpus with the goal to identify the most important keywords for the
cluster. Apache Lucene was a tool, which helped us to gather these metrics.

After we had those important keywords, we have counted the frequency of
each keyword in the cluster-blogs. This list sorted by frequency in descending
order will be rendered as our tag cloud. The higher the frequency the higher
the font-size of the keyword will be, which gives the common look-and-feel
of a tag cloud.

The 10 extracted keywords for the DE-graph ordered by frequency are as
follows: heute,stuttgart,woche,gegen,neue,blog,teil,tage,alles,neues

Those tags for the whole graph are of little value as the whole topic
spectrum is too broad. More interesting is to use those keywords to analyze
the content of single communities. Examples of various tag-clouds for specific
clusters are covered in Table 4.22.

The advantage of this tag-cloud generating process is that it is fully auto-
mated. We have created a small web-application performing all the required
steps automatically. This tool has helped us during this thesis to explore
the clusters manually to get a better understanding of the cluster’s anatomy.
But there were also problems with that approach, which have impacted the
quality of the results. There was the technical problem to automatically
identify the RSS feed and parse it. We have reused a software library, which
discovers the URL of the RSS feed automatically but apparently there were
still a larger number of blogs where that automatic feed discovery resulted in
an error so that we couldn’t get the content. An alternative would have been
to use the whole HTML source code for every blog URL instead of the RSS
Feed. Due to time constraints this couldn’t be implemented anymore. It is
also worth noting that content extraction, more specifically tag-extraction
seems to be a whole research topic on its own and we have just used this
approach as an experiment to get a rough overview over a cluster and to
have a tool at hand to make it “visible” easily.

Tag Cloud from manual tags

As described in Section 4.10.1 we have already tagged the DE-blogs man-
ually. Thus, it is an easy step to create another tag-cloud based on those
manually created tags as opposed to the tag-cloud created in an automated
process based on the real website content. As those tags were assigned by a
person who has manually looked at each website and assigned the tags more
carefully we expect those tag tags contain less “noise” than the automati-



4.11. EXPLORATIVE CLUSTER ANALYSIS 79

cally determined tags. Although this manual process is also prone to errors -
especially subjectiveness - we think that those tags give a better impression
about the question “what are the blogs inside a cluster writing about”, and
we expect them to match up with the tag cloud from section 4.11 at least
in a sense that if the automatic tag cloud contains the terms recipes, cook-
ing, food, restaurant or wine, then the manual tag cloud should also contain
similar terms.

personal (327),misc (259),web (123),politics (118),society
(85),media (75),music (70),socialmedia (55),blogging (50),photo
(42),tech (42),journalism (40),art (32),movies (24),news
(24),business (20),literature (18),traveling (18),cooking (18),local
(18),books (17),humor (16),food (15),marketing (15),sports
(12),design (12),mobile (10),swiss (10),law (10),women
(10),berlin (10),poetry (9),lifestyle (9),culture (9),pr (9),ap-
ple (7),health (6),science (5),family (5),shopping (5),wordpress
(5),it (5),lyric (5),religion (4),economy (4),career (4),recipes
(4),videogames (3),podcast (3),startup (3),history (3),thailand
(2),languages (2),software (2),animals (2),videos (2),privacy
(2),comics (2),advertising (2),mannheim (1),people (1),nature
(1),bahn (1),patents (1),wine (1),ecommerce (1),london (1),lan-
guage (1),spam (1),hardware (1),google (1),events (1),bloging
(1),security (1),education (1),brands (1),restaurants (1),leipzig
(1),community (1),hamburg (1),asus (1),photos (1),politcs
(1),russia (1),basel (1),tv (1),finance (1),garden (1),electronics
(1).

This gives a first impression of the DE-graph. We see that personal blogs
and blogs writing about web topics and politics are the majority of the blogs
tagged manually.

Examples of Cluster Tag-Clouds

In this section we are giving a few random examples of single clusters and
their tag clouds.

4.11.1 Content clustering

Another approach we have taken to evaluate the results of the structural
algorithms was to cluster the DE-network by content with the help of a
clustering algorithm based on Non-negative matrix factorization (NMF) with
the help of Rafael Schirru (DFKI). That means in theory after having applied
this algorithm over all blogs and their content you get a list of clusters and the
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Cluster # Blogs Mod. Cond.

Blondel 24 0.007 0.572
content-tags: vfb, spieltag, frankfurt, bundesliga, vfl, teil, saison, fc,
eintracht, schalke
manual-tags: sports, personal, misc

Blondel 123 0.061 0.242
content-tags: teil, rezept, weinernte, kochen, event, euro, koch, penne,
johann, stehen
manual-tags: food, cooking, personal, misc, music, wine, nature,
recipes, garden, media, restaurants, business

METIS 458 0.155 0.304
content-tags: stuttgart, israel, berlin, blog, gegen, deutschland, mor-
gen, welt, heute, neues
manual-tags: politics, society, personal, journalism, misc, news, web,
media, swiss, music, tech, socialmedia, religion, local, movies, law, art,
economy, women, traveling, lifestyle, humor, privacy, history, russia,
basel, berlin, culture

Table 4.22: Example of 3 random DE-clusters and their content-tags and
manual tags

topic they belong to e.g. Cluster 1 (news and politics), Cluster 2 (food and
cooking) and so on. It is basically the opposite of our structural-clustering
algorithms. This content clustering does not take the link-structure into
account at all, but uses only the content. The goal was to compare the
structural cluster against the content clusters and to see if content clusters
are related to structural clusters.

Unfortunately this approach was not successful at all and we have not
identified any meaningful clusters. The reasons for this may vary. On the
one hand a reason could have been that we did not get enough content for
each blog e.g. because the RSS-Feed couldn’t be parsed or our automatic
process couldn’t find one. On the other hand we only used the titles of the
10 recent blog articles. It could be that the information provided in the titles
was not enough and we should have taken the article content as well. As this
approach was not a central topic of this thesis it was out of scope to perform
any further investigations in this direction.
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4.11.2 Conclusion of explorative analysis

The goal of this whole Section 4.11 was to have a tool at hand, which let us
easily “look” inside a cluster of blogs to see what they are about. Having
this possibility had also opened up new ways to compare how the content
of the clusters relates to the structural clustering algorithms. A permanent
question was: “Why do certain algorithms produce which clusters?” and this
explorative tools help to answer that question by also looking at the content
of each cluster. It helped to find out if certain clusters are formed because
the blog-owners all write about the same topic and tend to link each other
because of that common topic or even know each other in person.

Although we have used a lot of tools from the field of textual analysis like
TF-IDF values, term co occurrence Matrices, Tag-frequencies and tag clouds,
which we have related with structural data to come up with a measure, which
we call cluster-similarities, the question cannot be answered in an absolute
way. It is true that in some cases there is a connection between content of
the blogs and their link structure with the result that the algorithms identify
them to be part of the same cluster or community but this was always the
case. Good examples have been the “cooking-blogs”, which seem to link to
each because of the content. We will discuss this phenomenon in Section 4.12
in more detail.

4.12 Clustering of the Six Language Graphs

After we have elaborated on the methodologies how we have evaluated and
benchmarked the algorithms on various graphs in the previous sections we
have now applied the algorithms on all six language graphs. The result of this
computationally intensive process is Table 4.23 and Table 4.24 showing the
Top-2 Clusters for every algorithm in every language. Table 4.23 contains
results ordered by modularity and Table 4.24 contains results ordered by
conductance. The results are returned over multiple hierarchy levels and not
just for a specific level. The goal is also to draw conclusions at which level
the best clusters can be found which is a common problem with hierarchical
clustering algorithms [14, p 90]. In addition to the metrics of modularity
and conductance those tables also include the tags collected in Section 4.10.3
to see what are the best clusters writing about to see if we can see a prove
for our hypothesis that a connection between structural clusters and their
content does exist.

Observation #1: There is a difference between the tags of the two DE-
clusters in Table 4.23 and Table 4.24. While there does not seem to be a
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connection between the tags in first table, there is clearly a connection
visible in the second table. The tags of both DE-clusters in the second
table are clearly about the topic cooking. Thus, it seems that the
best clusters (in terms of conductance) of Blondel and METIS contain
similar blogs.

Observation #2: The same surprising effect seems to happen for the FR-
clusters, which are also about the same topic cooking in the conductance
table. From a sociological point of view one can reason that weblogs
writing about cooking seem to link very often to other blogs of the
same topic and less often to blogs of other topics. At least for the
French and German blogs that seems to be the case as those cooking-
clusters are the best clusters in both languages out of our dataset.
It is also interesting given the different sizes of the two networks and
clusters. While the French networks is about twice the size of the
German network, the French best-clusters are about 4 times as big as
the best German clusters but still share the same topic.

Observation #3: While the EN-clusters in Table 4.23 are rather huge clus-
ters (> 2000 blogs), there is a significant difference in the size of the
EN-clusters in Table 4.24 where the METIS cluster with the best con-
ductance value is very large (> 2000 blogs) and the Blondel clusters
is rather small (45 blogs). This can be interpreted that the size of
the community is no quality criterion for a community. Only when
you introduce other metrics as modularity and conductance it is pos-
sible to judge the quality of a community as those values seem to be
independent of he size of the cluster.
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Lang Algorithm Mod. Cond. # CCV # blogs level

DE Spectral 0.204 1.535 600 (65.36 %) 918 0
stuttgart,heute,berlin,tage,neue,deutschland,gegen,bitte,ach,neues

DE METIS 0.182 0.314 911 (99.35 %) 917 0
tage,woche,blog,heute,alles,teil,letzte,bitte,wochenende,neue

EN Spectral 0.224 1.003 3719 (83.2 %) 4470 0
day,wednesday,blog,happy,time,love,life,week,review,book

EN METIS 0.219 0.091 2241 (99.73 %) 2247 1
day,love,happy,time,wednesday,birthday,review,blog,book,fun

FR Spectral 0.201 1.653 1025 (60.29 %) 1700 0
retour,petite,vacances,petits,bonne,noël,jour,rentrée,nouveau,suite

FR Blondel 0.165 0.419 923 (98.72 %) 935 2
retour,rentrée,vacances,petite,happy,petits,sac,jour,robe,merci

IT METIS 0.240 0.041 316 (91.59 %) 345 2
cinema,film,iphone,ottobre,trailer,parla,puntata,factor,tv,berlusconi

IT Spectral 0.206 1.685 962 (69.41 %) 1386 0
ottobre,milano,google,blog,tv,roma,facebook,web,online,libro

ES Spectral 0.229 0.847 2178 (81.09 %) 2686 0
nuevo,mundo,internet,españa,otoño,madrid,nueva,feliz,contra,verano

ES METIS 0.221 0.102 2646 (98.51 %) 2686 0
españa,nuevo,iphone,madrid,mundo,octubre,cómo,blog,internet,google

PT Spectral 0.215 1.443 1341 1888 0
fotos,iphone,blog,poesia,google,mundo,só,portugal,anos,tv

PT METIS 0.206 0.150 1784 1878 0
fotos,amor,blog,google,concurso,mundo,iphone,download,natal,poesia

Table 4.23: DE: Best two clusters by modularity of each algorithm incl. tags
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Lang Algorithm Mod. Cond. # CCV # blogs level

DE Blondel 0.061 0.242 119 (96.75 %) 123 2
teil,rezept,weinernte,kochen,event,euro,koch,penne,johann,stehen

DE METIS 0.059 0.249 112 (97.39 %) 115 3
teil,rezept,kochen,weinernte,euro,koch,penne,johann,stehen,riesling

EN METIS 0.219 0.091 2241 (99.73 %) 2247 1
day,love,happy,time,wednesday,birthday,review,blog,book,fun

EN Blondel 0.002 0.095 44 (97.78 %) 45 0
facebook,vehicle,airtight,series,game,coupon,day,southpeak

FR Blondel 0.160 0.152 721 (98.23 %) 734 2
chocolat,gâteau,tarte,pain,pommes,cake,pause,riz,moelleux,macarons

FR METIS 0.163 0.157 835 (98.47 %) 848 1
chocolat,gâteau,tarte,pain,pommes,cake,recette,petits,noix,crème

IT METIS 0.240 0.041 316 (91.59 %) 345 2
cinema,film,iphone,ottobre,trailer,parla,puntata,factor,tv,berlusconi

IT Blondel 0.022 0.116 44 (97.78 %) 45 0
roma,halloween,iphone,trailer,smartphone,hotel,milano,puntata,salone,genova

ES Blondel 0.079 0.084 448 (99.78 %) 449 2
boca,fútbol,españa,barça,gol,copa,river,actitud,liga,messi

ES METIS 0.221 0.102 2646 (98.51 %) 2686 0
españa,nuevo,iphone,madrid,mundo,octubre,cómo,blog,internet,google

PT Blondel 0.164 0.089 1173 1176 2
fotos,google,blog,download,concurso,amor,iphone,poesia,windows,twitter

PT METIS 0.206 0.150 1784 1878 0
fotos,amor,blog,google,concurso,mundo,iphone,download,natal,poesia

Table 4.24: DE: Best two clusters by conductance by algorithm incl. tags



Chapter 5

Conclusion

5.1 Considerations

Before drawing conclusions from the evaluation results there are some things
to be considered first:

The list of used algorithms and metrics used in this thesis is far from com-
plete. There are many more algorithms and metrics, which could have
been considered but we wanted to show a selection of algorithms of
different algorithmic classes.

The goal of this thesis was to give an overview over the topic community
identification and show practical use especially with the focus on the
available blog dataset. That is why this thesis does not focus on the
mathematical details as it is found in many other papers about this
topic, which usually have a more specific focus on a single aspect.

5.2 Results

Referring back to the questions we posed in Chapter 1, we come to the
following answers:

The algorithms were able to identify communities / clusters in the datasets
available to us. The properties of the graph have an impact on the
results of the algorithms.

We were able to use available metrics like modularity and conductance to
quantify the quality of the identified clusters and we were also able to
visualize this with the help of several kinds of plots like CLM-Plots and

85
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NCP-Plots. It was also possible to compare some of the results against
a pre-defined gold standard / ground truth.

We could demonstrate the practicability and impracticability of the algo-
rithms under test. Scope and limitations of different algorithms could
be demonstrated to a certain extend even with the limited datasets
available.

Regarding the correlation between structural clusters and the content of
the weblogs we could at least show some examples where this is true.
We can also say that content and clusters are not correlated in every
case, as there are too many reasons for why different blogs link to each
other, but the content and topic of interest of certain blog authors is
definitely one reason and we were able to show that in some cases.

5.3 Future Work

The whole area of social network analysis, community identification, clus-
tering, data analysis and visualization is a very active topic in the scientific
community, because of the availability of massive datasets and the success of
social networks like Facebook and Twitter1 these days. The amount of scien-
tific papers, the number of different algorithms, metrics and their derivates is
too large to be handled in a single thesis. Another fact to consider is the inter-
action between different disciplines like mathematics, statistics, physics, com-
puter science, programming, software architecture, data mining and graphics.
To do social network analysis all areas have to be touched and understood.

Thus there is lots of room for future work to be done here.

As the choice of the programming language and the implementation has a
considerable impact on the runtime and thus the practical applicability
of certain algorithms, future work could focus on more efficient imple-
mentations of the algorithms also in different programming languages.

Also related to the software development aspect is the creation of tools,
which make it easy to analyze such data and to apply the algorithms
in a more integrated and user-friendly way. Especially the visualiza-
tion of the data will be a key-factor for the success of social network
analysis in the future. Today there are hundreds of different tools for

1http://twitter.com
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graph analysis, clustering and visualization but many of them are very
scientific and need a lot of expert knowledge in order to be used which
is due to the complexity of the whole topic. This expert-knowledge
is not available in all places outside research-community and in order
to be used in practice like companies who want to use the data, re-
search also has to focus on ways how to improve the tools and make
them available to the non-scientific users or to scientists of different
disciplines like sociology.

The metrics used for quantifying the quality of the identified communities
in this thesis were mainly modularity, conductance and number of cor-
rectly classified vertices. There are more metrics or variations of the
metrics above. Future work could concentrate on those different met-
rics and evaluate the impact on the results of measuring community
quality.

In Section 4.10.1 we have used different techniques to categorize the con-
tent of the weblogs. We have used keyword extraction based on TF-IDF
and manual tagging. There are more efficient ways to extract keywords
from websites, which e.g. handle synonyms etc. Also content clustering
we have tried to apply in Section 4.11.1 has failed so future work could
concentrate on identifying why it has failed and how it can be improved.
This would make it possible to compare the results of the structural
algorithms to a different content-based clustering technique to answer
the questions of how much the content influences the structural clus-
ters. Another interesting aspect is how information about structure
and content can be combined in order to improve the identification of
communities.

In this thesis we have always talked about identification of static communi-
ties. The next step would be to analyze how we can identify commu-
nities and track their evolution over a period of time. There is some
work done in this area in [19].
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