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Abstract

Recently, a convergence of mobile computing technologies and the Internet
is apparent. On the one hand, this trend leads to new opportunities for
providing spatial assistance to users on the move. On the other hand, while
engaging in everyday activities, people develop personal preferences about
visited places and routes. By observing people’s spatial behavior via mobile
location sensing technology, both user preferences and geographic character-
istics of places and routes can be implicitly captured, further improving the
assistance process.

This thesis proposes a novel approach to collect and disseminate shared
spatial content by employing semi-automatic capture of spatial behavior, ag-
gregation of spatial and contextual data, and personalized recommendation
and visualization techniques adapted to mobile scenarios. To demonstrate
the approach, a prototype has been developed for the Google Android plat-
form for mobile devices.
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Chapter 1

Introduction

Foreword

The Internet is experiencing exponential growth and global expansion. This
has led many people to believe that the Internet is ushering in a new era,
the information age, and a new social form, the information society. Web 2.0
applications act as platforms creating collaborative, community-based sites,
where users provide and organize the content.

Furthermore, globalization is forcing us to live faster lives, dominated by
the need for mobility. Mobility consequently leads to more people traveling
and moving in unfamiliar areas. Realizing the modern accelerated lifestyle
requires supporting tools and information. This especially holds for spatial
information, since it is attached to almost any everyday activity. The rapid
spread of laptops, mobile phones and other mobile devices seems to lead to a
new technological milestone – the convergence of the Internet and the cellular
telephone. The trend to mobility has also brought about a whole plethora of
new possibilities for spatial assistance in mobile environments. Supporting
tools and mobile technology that are aware of the user’s current situation
and interests can assist the user, presenting up-to-date spatial information
in an individual and flexible way.

On the one hand, a large quantity of spatial data is produced by people
engaging in various everyday activities. People’s spatial behavior can be ob-
served and analyzed for two purposes: capture of geographic characteristics
of places and routes, and acquisition of user preferences. The spatial behav-
ior can be recorded via ubiquitous mobile technology in an unobtrusive way.
On the other hand, mobile recommendation systems can benefit from this
data in order to deliver personalized spatial recommendations to users on the
move.
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Chapter 1. Introduction

This thesis proposes a novel context-driven approach to capture and use
observed spatial behavior: Crumblr. The approach employs a life cycle con-
sisting of three main steps: user observation, aggregation of spatial and con-
textual data, and personalized recommendation of spatial data. Emphasis is
put on supporting everyday activities of mobile users by offering relevant spa-
tial information for quick decisions. The recommended items are backed up
by explanations derived from the utilized recommendation model. In order to
demonstrate the approach, a proof-of-concept prototype has been developed
for the Google Android mobile platform using open-source software solutions.

Thesis Structure

1. Introduction

2. Background

3. Related Work

4. Introducing Crumblr

5. System design

6. Algorithms

7. Discussion

8. Conclusion

Figure 1.1: Thesis struc-
ture

The thesis is structured as follows (see Figure
1.1):

Chapter 2 develops the theoretical and tech-
nical background of the thesis. The trends and
technologies behind Web 2.0, mobile devices and
context-aware systems are described. Finally,
the characteristics and the potential of user-
generated spatial content are outlined.

Chapter 3 reviews related approaches for
capturing and disseminating content and user
preferences about places and routes. An evalu-
ation of existing work reveals potentials for im-
provements, further motivating this thesis.

Chapter 4 introduces Crumblr, a novel con-
cept for capturing, aggregating, and disseminat-
ing spatial content and user preferences on mobile
devices. After a discussion of the rationale and
ideas behind it, the visual appearance of the im-
plemented prototype is presented via user stories.

Chapter 5 turns to the aspects related to
system design and technological decisions.

Chapter 6 puts the focus on the imple-
mented algorithms for data collection, aggregation, recommendation and ex-
planation. Related work is presented for each algorithm class in question,
providing a rationale for the chosen approaches.

Chapter 7 provides some critical remarks, identifies open issues, and
discusses general ideas about possible future work.

Chapter 8 closes with a conclusion.
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Chapter 2

Background

Today’s most popular Web applications and services such as blogs, video
sharing and social networking platforms act as collaborative, community-
based sites where users provide and organize the content. Given the high
adoption rate of mobile devices and the trend to open systems, a new gen-
eration of mobile Internet applications begins to gain momentum – location-
based services. Recently, a myriad of such services is targeting the area
of capturing and disseminating information about spatial entities such as
places and routes. To create an effective user experience and provide real
added value to the user, developers are facing a series of challenges when de-
signing such information systems for mobile devices. To address the problem
of information overload, personalized recommendations based on the user’s
current situation and preferences are necessary.

This chapter describes these trends in more detail and paves the way
for the core work in this thesis, providing a motivational background and
positioning it in the related fields of research.

2.1 The Socio-Technological Evolution of the

Web

This section looks back at the history of the Internet, outlines the factors
that led to a ’new’, ’user generated’, ’social’ version of the Web, and gives
an overview of the key principles behind it.

The Early Beginnings

The idea of Social Software dates back to the 1960s and JCR Licklider’s
thoughts on using networked computing to connect people in order to boost

3



Chapter 2. Background

their knowledge and their ability to learn [Alexander, 2006]. Sir Tim Berners-
Lee initially had a similar vision of the World Wide Web when he invented
it at CERN in 1991. However, the history of the Web shows that it was not
reflecting Berners-Lee’s idea of a single, global information space in it’s early
years [Berners-Lee, 1999].

It is interesting to note that the first Web client built by Berners-Lee,
WorldWideWeb [Berners-Lee, 1990], could not only view HTML pages, but
also edit them. This technology was supposed to spark a participative archi-
tecture of the Web where the content would be truly user-generated, enabling
seamless information sharing and linking of people. However, to speed up
the process of adoption within CERN, a series of ports to other machines and
platforms led to the removal of the ability to edit pages through the Web
client [Berners-Lee, 1999]. Another possible part of the explanation could be
the fact that the HTTP PUT and POST methods had not yet been imple-
mented on the server side — the first protocol revision to specify these and
other methods was published in 19961. This had the consequence that files
could be edited in a local file system only, which in turn had to be copied
onto a HTTP server manually. Subsequently developed browsers like Mosaic
(later: Netscape) shaped the image of the Web as a ’lecture’ style platform
where few ’privileged’ people published and the majority only consumed the
content.

Around 2003, the way people and businesses were using the web started
to shift noticeably. The rising popularity of applications and services such
as blogs, video sharing and social networking platforms has changed the way
we interact and network. These applications are the main concentration
points of Media coverage about something called Web 2.0 – a social Web
in which people both contribute and consume. Web 2.0 applications act as
platforms creating collaborative, community-based sites where users provide
and organize the content.

Advancing to the Digital Age

Several economic and technological advancements accelerated the adoption
of the new approaches gathered under the label Web 2.0 [Deitel et al., 2007]:

Powerful, cheap hardware — According to Moore’s Law the power of
hardware doubles every two years, while the price remains essentially
the same [Moore, 1965]. Very powerful hardware became widely af-
fordable.

1http://www.ietf.org/rfc/rfc1945.txt
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2.1. The Socio-Technological Evolution of the Web

Broadband Internet access — Instant access, fast speeds, and simple
connections have contributed to the explosion of broadband high-
speed Internet. Of the 35% of Internet users who had posted content
online, 73% had broadband Internet [Horrigan, 2006]. A multitude of
the digital media could not have been uploaded without broadband
access.

Open Software — The cost of starting and failing a new business on the
Web has been drastically lowered due to a plurality of available, often
free, open source software. Those include various developer toolkits,
such as the LAMP stack2.

Accessible business models — Using business models like affiliate
programs, advertisements, virtual world monetanization, viral market-
ing, and peer-production methods, people can start earning modest
amounts of money quickly.

These developments provided a foundation for a participative architec-
ture of the Internet as we know it today. The next section sheds more light
on the term Web 2.0 and outlines the key principles associated with it.

What is Web 2.0

The term Web 2.0 was coined by Dale Dougherty of O’Reilly Media in 2004
and was further made popular by Tim O’Reilly [O’Reilly, 2005]. Web 2.0 has
become a buzzword that is used to describe a wide range of community-based
online applications. These applications and services are early manifestations
of ongoing Web technology development and evolution of the Web [Anderson,
2007].

When Sir Tim Berners-Lee was asked in an interview whether Web 2.0
was different to what might be called Web 1.0, he replied:

“Totally not. Web 1.0 was all about connecting people. It was
an interactive space, and I think Web 2.0 is of course a piece of
jargon, nobody even knows what it means. If Web 2.0 for you is
blogs and wikis, then that is people to people. But that was what
the Web was supposed to be all along. And in fact, you know, this
Web 2.0, it means using the standards which have been produced
by all these people working on Web 1.0.” [Laningham, 2006]

2Linux, Apache, MySQL, and PHP
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Chapter 2. Background

User-Contributed Value

The Long Tail

Network Effect

1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005

Co-creation Remixability

Decentralization
Emergent
Systems

Amazon

Blogs

eBay

Google

Wikipedia

BitTorrent

Del.icio.us

Flickr

Google MapsWeb Services

Foundation Attributes Experience Attributes

Facebook

Figure 2.1: Web 2.0 – key principles and applications

Many of the typical Web 2.0 applications are mature, having been in use
for a number of years. Some of the most prominent examples of Web 2.0
services and applications are blogs, wikis, social networking and multimedia
sharing sites. Basic familiarity with these applications is assumed and they
will not be introduced here.

Tim O’Reilly and his colleagues at O’Reilly Media tried to identify the
key concepts around the Web 2.0 hype in [O’Reilly, 2005]. Brandon Schauer
from Adaptive Path3 went one step further and provided another perspec-
tive on the principles behind Web 2.0, bringing further structure into this
phenomenon [Schauer, 2005]. Schauer has identified two layers of attributes
that characterize Web 2.0 applications – the Foundation Attributes and the
Experience Attributes. Summarizing his work, an overview of the identified
attributes with a chronological set of popular Web 2.0 applications is given
in Figure 2.1.

Foundation Attributes frame the economic model of Web 2.0 services,
pre-dating other attributes by several years. Moreover, these are not identi-
fied as key Web 2.0 principles since many non-Web 2.0 services also utilize
them (e.g. e-mail and bulletin boards). The following list describes the
Foundation Attributes.

3http://www.adaptivepath.com
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2.1. The Socio-Technological Evolution of the Web

User-contributed value — Where O’Reilly talks about user-generated
content in general, Schauer differentiates two levels of user interaction.
User-contributed value represents the basic level while “co-creation”
(explained later) builds on it. In the early beginnings of user-generated
platforms, users’ contributions were substantial for the overall value of
a service. The best example for this concept are blogs.

The Long Tail is a very common business model on the Internet. On sites
like Amazon4 and eBay5, the total sales volume of low popularity items
exceeds the volume of high popularity items. Brynjolfsson, Hu, and
Smith found a large proportion of Amazon.com’s book sales come from
obscure books that are not available in brick-and-mortar stores [Bryn-
jolfsson et al., 2003]. Wired Editor-in-chief Chris Anderson has ex-
plained the term ’long tail’ as a reference to the tail of a demand curve6.

Network effect — The value of the network substantially increases with
each new user. eBay, for example, relies on the community to buy
and sell auction items, and Monster7 (a job search engine) connects
employers with job seekers.

Experience Attributes build upon the Foundation Attributes, deliver-
ing unique service experiences that were previously undeliverable. Surfaced
around 1999/2000, the Experience Attributes identified by Schauer are de-
scribed in the following list:

Decentralization in this context means that there is no central authority
having control over user experiences. A prominent example is the Bit-
Torrent network [Cohen, 2003]. It is basically an ad-hoc network of
peers sharing content with each other.

Co-creation represents Schauer’s second level of user interaction, based on
user-contributed value. The concept states that collaboration can re-
sult in smart ideas. By working together, people can combine their
individual knowledge for everyone’s benefit. When the U.S. submarine
Scorpion sank in 1968, the Navy asked various experts to work indi-
vidually assessing what might have happened; their answers were then
collectively analyzed, determining the accurate location of the sub-
marine [Surowiecki, 2005]. A nice example for a Web 2.0 application

4http://www.amazon.com
5http://www.ebay.com
6http://www.npr.org/templates/story/story.php?storyId=4156078
7http://www.monster.com
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Chapter 2. Background

utilizing the principle of co-creation is a spam filter based on “collab-
orative filtering”. The basic idea is to let the users act individually to
combine their results and collectively decide what is spam and what
not. Such a system would outperform systems that rely on analysis of
the messages themselves [O’Reilly, 2005]. Another prime example are
wikis.

Remixability relates to the possibility of creating tailored user experiences
by combining several Web services and data sets. Examples for reusable
services are the Amazon Web API and a myriad of Google APIs.

Emergent systems provide added value to the overall experience by ag-
gregating the results of cumulative user actions at the lowest levels.
Examples are “folksonomies”, as used in Flickr8 and Del.icio.us9. The
system derives value from people using their own vocabulary in order
to add explicit meaning to the information or object they are consum-
ing. This also includes implicitly user-generated content that is based
on users’ online behavior. For example, Amazon tracks the individual’s
purchase history and compares it to purchases of other users with sim-
ilar tastes to make personalized recommendations, creating additional
value for users.

Recently, there has been an explosion of services focusing on handling the
vast amount of user-generated content to prevent information overload. So-
called “aggregation services” and “mash-ups” such as RSS aggregators and
countless spatial applications based on the Google Maps API collect and ag-
gregate user data, creating tailored, relevant presentations of content to meet
specific needs. The explosion of user-generated content leads to a growing
need and popularity of such services. The following sections present further
forces sparking that need.

2.2 Proliferation of Mobile Devices

As of this writing, there are nearly three billion wireless mobile phone sub-
scribers worldwide and that number is growing rapidly. By 2003 more people
had mobile subscriptions than subscriptions to traditional land lines [Lassica,
2007].

Day by day, the number of new users is adding up to Nokia Siemens
Networks’ (NSN) vision of 5 billion people connected by 2015 [NokiaSiemen-

8http://www.flickr.com
9http://del.icio.us
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2.2. Proliferation of Mobile Devices

sNetworks, 2005]. The capabilities of mobile telephony are used by both
rich and poor, educated and uneducated alike. About 90% of new users of
mobile phones will be in emerging markets such as Asia, South America and
Afrika [NokiaSiemensNetworks, 2005]. According to Veli Sundbäck, Execu-
tive Vice President at NSN, several factors have contributed to the fast-paced
proliferation of mobile phones:

• In emerging markets like India, South Africa, Morocco and some
African countries governments are speeding up the adoption process
by increasing regulation and providing an enabling environment for
mobile operators. For instance, 26% of the owners of mobile phones in
Kenia use their phones for both business and as a source of news and
information [NokiaSiemensNetworks, 2007].

• Second, high investments in research and development by the mobile
phone industry rapidly led to affordable prices for mobile phones. The
devices are also becoming smaller and less bulky.

• Finally, apart from being affordable, the mobile technology is fully uti-
lizing the network effect in the civil society. The mobile phone has
become an indispensable part of everyday life providing access to a
variety of services.

Nowadays, the average consumer is not constrained to person-to-person
voice calls and short text messages (SMS). Accessing wireless local area net-
works, browsing the World Wide Web, social networking, fully embracing all
forms of participative media – the advanced functionalities of mobile devices
are shaping the behavior of the emerging Mobile generation [Lassica, 2007].

While the Web stands for anytime and anywhere access, a mobile device
brings these concepts to the next level. Why wait until you get home to
log on to the PC to tell your closest friends about a nice restaurant you
just have discovered? The Internet has become more than just a PC-based
phenomenon. A mobile device seems to be the natural extension to the
traditional Web [Toivonen, 2007].

Besides the positive effects on the use of wireless Internet, the mobile
phone has disadvantages, as well. Foremost, it has a form factor designed for
portability. Portability, however, limits the user experience: small display,
limited input mechanisms, short user attention spans, and relatively short
battery lifetime present additional challenges for system developers. Soft-
ware development efforts must account for these new types of constraints in
order to deliver an effective and satisfying mobile experience.

9



Chapter 2. Background

2.3 Context-Aware Mobile Services

As the owner of a mobile device is trackable utilizing location sensing tech-
nologies, the user’s frequently changing location provides both a challenge
and an opportunity to fulfill the need for highly personalized systems.

Location is just one category of user context that can be important. One
of the most adopted definitions of context in the field of context-awareness
is the one from Abowd et al.:

Context is any information that can be used to characterize the
situation of an entity. An entity is a person, place, or object that
is considered relevant to the interaction between a user and an ap-
plication, including the user and applications themselves. [Abowd
et al., 1999]

More specific context definitions were suggested, e.g. by Schilit et al.
[Schilit et al., 1994], who stated that context could be divided into three
categories: the computing context (such as network connectivity, communi-
cation bandwidth and nearby resources such as printers and displays), the
user context (such as the user’s profile, location, people nearby and the cur-
rent social situation), and the physical context (lighting, noise levels, traffic
conditions and temperature). Chen and Kotz additionally proposed the time
context (such as time of day, week, month and season of the year) and con-
text history, which could be useful information in map applications [Chen
and Kotz, 2000].

In [Nivala and Sarjakovski, 2003], Nivala and Sarjakovski developed a
classification of context types with specific reference to mobile services that
are map-based. Their results are summarized in Table 2.1.

Systems that dynamically change their behavior based on context are
called context-aware, reactive and situated [Abowd et al., 1999]. In mobile
cartography, the term adaptive has become the most commonly used [Re-
ichenbacher, 2004]. [Reichenbacher, 2003] has explored the various kinds of
adaptation, resulting in four different levels:

1. Information level: for instance, changing content by filtering informa-
tion with respect to proximity to a user or place.

2. Technology level: encoding information to suit different device charac-
teristics, e.g. display size, network and positioning availability.

3. User interface level: for example, panning and re-orientating a map as
the user moves about.
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Context type Properties

Mobile user The identity of the user might allow the service
to consider such issues as their age, gender, and
language.

Location and time Allows information and services to be localized.
Time can refer to the precise time of day or longer
intervals such as morning, afternoon, etc.

Orientation In a navigation service it is important to check
the user is heading in the right direction, a tourist
guide might determine what historical building
the user is facing, etc.

Navigation history Can help to build up a profile of user interests,
enhancing the provision of relevant information.

Purpose of use Defined by activities, goals, tasks and roles.

Social situation Characterized by user’s proximity to others and
social relationships.

Environment Can include such things as the lighting level or
how much ambient noise there is.

System properties Everything related to the computer infrastructure
the user is employing falls under this category:
Internet connectivity, communication bandwidth,
the type of device and its capabilities (touch
screen, color), etc.

Table 2.1: Categorization of context categories for mobile map services [Ni-
vala and Sarjakovski, 2003]

4. Presentation level: the visualization of the information is adapted.
Restaurants that are more relevant to a user are shown with more
crisp icons and those less relevant use more opaque ones, for example.

Location as a core component of mobile user context has proven to be
useful in many case studies and existing applications [Strahan, 2002]. It
yields a new and rich modeling dimension that needs to be considered when
designing mobile applications in order to provide real added value to the
mobile user.

For example, when a person is on the move and wants to have lunch in
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Figure 2.2: LBS components and information flow [Steiniger et al., 2006]

a restaurant in their vicinity, a useful approach would restrict the search in
the Internet by adding several constraints, e.g. where is the user (current
location) and what kind of restaurant they would like to go to (purpose of
use). Such kind of search could be performed using a location-based service
(LBS):

Location-based services are information services accessible with
mobile devices through the mobile network and utilizing the abil-
ity to make use of the location of the mobile device. [Virrantaus
et al., 2001]

A LBS is typically comprised of five basic components and their connec-
tions shown in Figure 2.2, which are explained below:

Devices represent tools for users to request the needed information (e.g. a
restaurant recommendation). Possible devices include mobile phones,
PDAs and laptops.

Positioning Component is an implementation of a location sensing tech-
nology, e.g. GPS. Nowadays, this component is usually physically in-
tegrated into the mobile device. Location sensing technologies are de-
scribed in more detail in section 2.4.
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Communication Network and Internet transfer the user data and ser-
vice requests from mobile devices to the service provider and then the
information back to the user.

Service and Application Providers are responsible for processing
service requests from users. Offered services include searching yellow
pages, calculating routes, recommending places.

Data and Content Providers store and maintain all the data that is used
by Service Providers. This includes geographic base data, yellow pages
and traffic data.

Many mobile devices are being designed with a geographic location track-
ing technology for reasons of safety, finding travel destinations, etc. The
telecommunications industry has just started to offer LBS to subscribed users
[Reichenbacher, 2004]. LBS assist users in mobile environments by being
aware of the user’s location context, behaving adaptive in the aforemen-
tioned sense. Existing applications include emergency services (for calling
fire-fighters, medical teams, police), navigation services, travel and tourist
guides, billing services, and tracking and fleet management services [Steiniger
et al., 2006].

2.4 Location Sensing Technologies

Location-based services require location sensing capabilities in order to work.
There exists a variety of different location sensing technologies with signif-
icantly different characteristics, different infrastructure and device require-
ments as well as different cost and limitations. A comprehensive description
of characteristics of all available technologies is out of the scope of this the-
sis. Instead, this section briefly introduces some of the most popular location
sensing approaches and systems.

Cell Identifier

The mobile phone network consists of a mosaic of overlapping radio cells
(cf. Figure 2.310), each determined by a base station having a radio antenna
installed [Siemens, 2001]. Each cell is identifiable by its unique cell ID. The
user’s position can be determined by simply looking up the stored location
of the associated cell ID. Since it does not require any modifications to the

10Picture taken from http://en.kioskea.net/ (Creative Commons License 2.0).

13



Chapter 2. Background

Figure 2.3: Mobile phone network cells

mobile phone nor the network, this is the simplest location sensing technol-
ogy in terms of deployment cost. The accuracy, however, highly depends on
the concentration of cells. The smaller the radius of a cell, the higher is the
available bandwidth. So, in highly populated urban areas, there are cells
with a radius of a few hundred meters, while huge cells of up to thirty kilo-
meters provide coverage in rural areas. For emergency or navigation services
such accuracy is insufficient [Siemens, 2001].

Network-based Location Sensing

There is a large amount of research work focusing on physical parameters that
can be derived from the network signal transmission characteristics, such as
signal propagation time, signal field strength and angle of arrival [Pandey
and Agrawal, 2006]. Using such signal characteristics, the positions of the
individual nodes in the communication network can be estimated. Related
approaches are outlined in the list below.

Angle of Arrival (AoA) is a method for measuring the direction of an in-
coming radio-frequent wave and obtaining a position estimate of the
source (the mobile phone) by calculating the intersection of apparent
arrival directions. This method requires two receiving base stations —
each additional base station increases the accuracy, however. Special
antenna arrays in base stations are required for AoA calculation.
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Received Signal Strength Indicator (RSSI) can be translated into dis-
tance using a theoretical or empirical model. For example, the signal
strength declines with increasing distance between communicating par-
ties. The RSSI method is susceptible to irregular signal propagation
characteristics like fading, interference and multi-path effects.

Time of Arrival (ToA) is another technique used to obtain range infor-
mation. Distance estimation is performed by measuring the propaga-
tion time from source to destination. At least three highly synchronized
base stations must receive the signal from the phone to be able to apply
trilateration and estimate positions.

Time Difference of Arrival (TDoA) requires three base stations to cal-
culate the relative differences of the received signal from the phone to
estimate its position. Strict time synchronization is needed.

The operating system used in the first-generation Apple iPhone trian-
gulates the user’s position based on signal strength measurements, for ex-
ample. Nevertheless, the described network-based techniques require high
infrastructure maintenance, increased network signaling, high up-front costs
and non-standard hardware. They have not yet reached a level of maturity
and accuracy required for deployment in large cellphone networks [Strahan,
2002]. The second generation of Apple’s iPhones (iPhone 3G) relies on the
Global Positioning System, which is introduced next.

Global Positioning System (GPS)

The Global Positioning System (GPS) is a widely accepted system for out-
door navigation. It was launched 1993 by the US government. Since then, a
constellation of more than two dozen GPS satellites broadcasts precise timing
signals by radio to electronic GPS receivers which allow them to accurately
determine their location in real time. A GPS receiver calculates its current
position by employing a triangulation process on the received signals from
several satellites. It has an accuracy of about ten meters and requires line-
of-sight connection between the mobile device and at least three satellites to
function [Bajaj et al., 2002].

Improvements to GPS

Several enhancements have been made to GPS. Two of the most widely ac-
cepted improvements will be outlined here - Differential GPS and Assisted
GPS.
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Figure 2.4: Differential GPS [Pendleton, 2002]

When the US Department of Defense made GPS available to consumers,
it was intentionally downgraded by imposing a special system mode called
“Selective Availability”. To deal with the resulting inaccuracies, a group of
engineers came up with “Differential GPS” (see Figure 2.4). It is an enhance-
ment to GPS that uses a network of fixed ground stations which are provid-
ing correction information to moving receivers. Today, even with Selective
Availability turned off, it currently provides a great means of inexpensive,
high-accuracy positioning, usually providing results better than pure GPS.
Differential GPS can improve accuracy to one meter or better [Bajaj et al.,
2002]. Its drawback is the high dependence on a few ground stations and the
increased network signaling.

When surrounded by tall buildings or being under trees, conventional
GPS might have difficulties providing reliable positions due to poor signal
conditions. Additionally, when first powered on under such conditions, a
traditional GPS receiver might be blocked for several minutes trying to re-
ceive all necessary data from satellites. Assisted GPS describes a system
that is trying to solve these problems. An outside source, such as an assis-
tance server and reference network, helps the GPS receiver perform the tasks
required to make position calculations [Djuknic and Richton, 2001].

Several outdoor location sensing approaches have been outlined in this
section. Offered free of charge and accessible worldwide, GPS is rapidly be-
coming a universal positioning utility as the cost of integrating the technol-
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ogy into vehicles, machinery, computers, and cellular phones decreases [Bajaj
et al., 2002]. It has become the de facto standard for mobile devices. Sev-
eral popular mobile devices support Assisted GPS. These include the Apple
iPhone 3G, several Nokia, HTC and Sony Ericsson models.

2.5 Open Mobile Systems

While todays LBS applications have become fairly popular in certain user
segments, the real success has yet to materialize [inCode Wireless, 2005].
This section provides a summary of the reasons why LBS have not turned
out as the expected success. Trends and developments are outlined that
promise to accelerate the adoption of LBS, as well.

The foremost reasons for the lack of success of LBS in its current format
are summarized in the list below.

• Software performance and usability: although the functionality is there,
most services are simply too slow and too cumbersome to use. This
is driven both by poor user interface design and poor browser perfor-
mance in most cell phones [inCode Wireless, 2005].

• Closed systems: with nearly 3 billion users worldwide, the mobile
phone has become the most personal and ubiquitous communica-
tions device. Proprietary protocols and systems, restricted network
functionality, and the lack of a collaborative effort has made it a
challenge for developers, wireless operators and handset manufacturers
to respond as quickly as possible to the ever-changing needs of savvy
mobile consumers [Open Handset Alliance, 2008]. Market analysts
agree that this is more of a struggle of the carriers trying to keep
control of some of the revenue source. However, they are being forced
to open their networks more and more in order to compete, opening
doors for companies like Yahoo and Google to take a considerable
share of the revenue [Informa Telecoms & Media, 2006].

• Network quality: for many consumers, the early days of mobile Inter-
net and location-based services were filled with great potential, but
experiences were limited by network quality [inCode Wireless, 2005].

The hurdles seem to be diminishing, however. 3G (third generation) net-
works bring tremendous improvements to the consumer experience of mobile
Internet. 3G networks, which first launched in Japan in 2001, are now be-
coming more ubiquitous in the US and Europe, significantly enhancing the
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consumer mobile data experience [Nielsen Mobile, 2008]. The buzzword of
the years 2007 and 2008 might be “open” – organizations including the LiMo
Foundation, the Open Handset Alliance, and AOL have launched open mo-
bile platforms and services.

In January 2007, the LiMo Foundation was founded. Its goal of establish-
ing a globally competitive, Linux-based software platform for mobile devices
has been endorsed by leading players in the mobile industry. The declared
mission of the LiMo Foundation is “to create an open, Linux-based software
platform for use by the whole global industry to produce mobile devices
through a balanced and transparent contribution process enabling a rich
ecosystem of differentiated products, applications, and services from device
manufacturers, operators, ISVs and integrators” [LiMo Foundation, 2007].

In November 2007, companies including Google, HTC, Samsung, LG,
and Motorola have formed the Open Handset Alliance (OHA), which aims
at providing technologies that will significantly lower the cost of developing
and distributing mobile devices and services. Google has developed An-
droid, “the first complete, open, and free mobile platform” [Open Handset
Alliance, 2008]. The Android platform is the first step in this direction – a
fully integrated mobile software stack that consists of an operating system,
middleware, graphical interface and applications. Consumers are expecting
the first phones based on Android to be available in October 2008 [Open
Handset Alliance, 2008].

In early 2008, AOL announced the Open Mobile Platform — a software
development platform for multiple operating systems that aims at making
it easier for developers to deploy applications across the countless mobile
operating systems and platform options [AOL Developer Network, 2008].

In a nutshell, 3G networks and open systems give mobile operators and
device manufacturers significant freedom and flexibility to design products.
Furthermore, it should significantly lower the entry barrier for new develop-
ers, fostering a community-based ecosystem for innovative applications.

2.6 Mobile User-Generated Content

As previously outlined, location-based services depend on content that is
provided by various sources like mapping agencies and yellow page services.
However, mobile user-generated content and social networking services for
mobile phones are quickly becoming the most important long-term business
model: in October 2006 the International Herald Tribune [Doreen Carvajal,
2006] featured a story in which it examined the rapidly growing value of mo-
bile phone based digital community services — user-generated pictures and
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videos on such sites as See Me TV, virtuality sites like Cyworld, etc. — and
estimated it to be $3.45 billion. 2004, the total value of mobile digital com-
munity services was well below $200 million. With the growing popularity
of sophisticated telephones, Informa Telecoms & Media forecasts that glob-
ally, operator revenue from such services will rise to more than $13 billion
by 2011 [Informa Telecoms & Media, 2006].

There are several location-based services outside the multimedia enter-
tainment segment which benefit from user-generated content and other Web
2.0 principles outlined in section 2.1. For example, traffic jams and radars
can be detected based on information shared voluntarily between all users of
the system [Michel Deriaz , 2008]. Nokia teamed up with TomTom to de-
velop a system for automatically detecting traffic jams by analyzing motion
patterns of mobile phones [Hilmar Schmundt , 2007]. The concept is simple:
if a large number of mobile phones are moving along a highway at a snail’s
pace, there must be a traffic jam.

The task of content provision has traditionally been handled by com-
mercial institutions, travel agencies and professional critics. With the ever
increasing popularity and recently observable convergence of mobile devices
and the Internet, a new magnitude of user-generated content creates new
possibilities for content provision. User-generated content can substitute,
extend and enrich commercially available content. For example, by collabo-
rating, users themselves can maintain an up-to-date database of interesting
jogging and biking routes in a large metropolitan area, being independent of
commercial content providers.

Motivations for Contributions

Despite the appeal of online communities, large numbers of them fail. For
example, in many online groups, participation drops to zero. On the popular
peer-to-peer file sharing service, Gnutella, ten percent of users provide 87%
of users with all the content. In open-source development communities, four
percent of members contribute 50% of answers on a user-to-user help site,
and four percent of developers account for 88% of new code and 66% of code
fixes [Beenen et al., 2004]. Although not everyone needs to contribute for a
group to be successful, groups with a large proportion of non-contributors
have difficulty providing needed services to members. To design technical
features of online communities and seed their social practices in a way that
generates ongoing contributions from a larger fraction of the participants is
considered an important and difficult challenge [Beenen et al., 2004].

In order to design an application that relies on user contributions, the var-
ious reasons why people contribute to such platforms should be understood
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first. Kindberg et al. [Kindberg et al., 2005] have classified the reasons for
camera phone image capture into two dimensions: social vs. personal, and
affective vs. functional. In a nutshell, social/affective photos were taken for
sharing experience or to connect with people, and social/functional photos
are intended to support a task. Individual/affective photos are images in-
tended for personal reflection or reminiscing, whereas individual/functional
photos support some future tasks not involving sharing. A related study
was performed by Ames and Naaman [Ames and Naaman, 2007], who exam-
ined the tagging activity in two active photo sharing web sites, Flickr and
ZoneTag. Similar to Kingberg et al.’s work, Ames and Naaman describe a
taxonomy of motivations to contribute annotations in these systems along
two dimensions, sociality and function. The functional dimension is defined
by the need for “organization” and “communication”, whereas the sociality
dimension differentiates between personal and social use of annotations.

To conclude, while user contributions typically seem to have a personal
and social side, the nature of the functional dimension depends on the nature
of the shared information and its possible uses.

Automatic Content Creation

Mobility brings another new possibility – the automation of content creation
and consumption. While on the move, the user’s context is changing, mak-
ing things and events around the user become interesting. Mobility adds
triggers which can be automatically detected and utilized without disturbing
the user. Typically while on the move, the user has to direct attention to
something else than the mobile device. At the same time, however, there can
be interesting things and events around the user, the sharing of which could
be relevant to companies and other users (e.g. the sheer fact that the user
has been somewhere). The aforementioned traffic jam detection system from
TomTom and Nokia is an example for this approach.

In [Toivonen, 2007], two main reasons have been identified why automatic
content creation might be useful. First, a previously unimaginable amount
of data can be collected. Data can be gathered from sensors and devices and
sent either as raw or aggregated data to a Web server. Context data like
the user’s location, weather conditions, services nearby, and the state of the
device are typical examples of data that can be continuously or periodically
collected without the need for a direct conscious user interaction each time.

Second, it is not feasible to expect people to manually tell the system
that they are in a certain context. However, not all information can be au-
tomatically detected with good accuracy and reliability, and for those also
manual input is often needed. It depends on the nature of the shared con-
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tent/context, whether doing it manually or automatically is more useful. For
example, the purpose of use is one of Nivala’s context categories (see Table
2.1) that is probably better collected manually. By merely observing a user
walking into a building with lots of shops and restaurants, it is difficult to de-
duce the performed task or activity with reasonable certainty. Nevertheless,
activity detection is an active research topic with promising results [Bellotti
et al., 2008].

Automatic content sharing entails both positive and negative features.
By analyzing large amounts of automatically collected user data, compre-
hensive user preferences can be extracted, for example. The biggest issue
with this, however, is privacy [Toivonen, 2007]. In [Iqbal and Lim, 2007],
Iqbal and Lim have conducted comprehensive research to assess issues and
threats in a real-life scenario involving location data obtained from people.
By employing anonymization techniques, opt-in/opt-out mechanisms, a pri-
ori mechanisms like setting control details, and a posteriori mechanisms for
altering or deleting shared content, the privacy issue can be handled to a
satisfying extent [Iqbal and Lim, 2007].

2.7 Capturing and Using Location Informa-

tion

To give a general sense of key terms used in this thesis and aid understanding
of the domain, informal definitions of the terms place and route are given
below.

A place is a real-world location where people can engage in daily activ-
ities like eating, relaxing, exercising, socializing, etc. Examples for places
include parks, museums, cinemas, health clubs, bars, and restaurants.

A route is regarded as a well-established course of travel, a way which
is passed or is to be passed. Examples for routes include routes for jogging,
biking, hiking, or sightseeing. It is important to note that the route itself is
the object of interest here, not its start or end points.

Mobile Recommendation Systems

As the modern world spins faster and faster, people are faced with the chal-
lenge of organizing their accelerated daily lives and their mobile activities.
Supporting tools and technology carry the potential to assist the user in
the organization of their daily activities which get more and more compli-
cated and time consuming [Reichenbacher, 2004]. The number of potential
places to visit and routes to follow can be quite overwhelming, especially in
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dense touristic regions. Personalized mobile recommendation systems can
help users find places matching their interests and current situation.

Tourists or new residents commonly need local place and route informa-
tion: a businessman would like to know where to go for a run in the vicinity
of his hotel, a new resident wants to know where the nearest upper-class gym
is located, a group of exchange students would like to know where the near-
est student pubs and bars are, a group of tourists wants to go on sightseeing
tours, etc. Even longtime residents need local information when their habits,
interests or obligations in life change. For example, new parents suddenly
need to discover places where they can find children’s activities or other par-
ents who want to socialize. When a person moves from one part of a big city
to another, they must re-establish a bond to the places nearby and the new
surroundings.

In order to effectively assist the user, a significant amount of adaptation
is indispensable when providing such information. In [Reichenbacher, 2004],
Reichenbacher has identified three reasons for this:

• First, the increasing quantity of user-generated spatial content and the
danger of overstimulation are pushing for a suitable channeling of the
information stream.

• Second, adaptation could lead to greater acceptance of new, yet par-
tially still immature technologies.

• Third, new value-added services which users have to pay for need cus-
tomization to guarantee user satisfaction.

However, a major problem in designing adaptive recommendation systems
is finding an effective, reliable method for acquiring user preferences [Ricci
and Nguyen, 2007].

Acquiring User Preferences about Places and Routes

The National Human Activity Pattern Survey [Klepis et al., 2001] in the
United States showed that people frequent everyday places including malls,
stores, health clubs, and parks for over two and a half hours a day. Doing
so, they develop personal preferences about nearby places and routes, and a
personal sense about the more or less subtle distinctions between them. The
system design must find the right balance between having precise information
about user preferences and the cost of acquiring it. For example, explicitly
querying the user focuses on the former, while user navigation mining focuses
on the latter.
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When talking about acquiring user preferences about places or routes, a
central question arises:

Will people share location information?

Related studies about the motivations for contributions in online commu-
nities have already been introduced in section 2.6. More specifically, Ludford
et al. investigated people’s willingness to share their location information
and messages associated with that location [Ludford et al., 2007]. For this
purpose, they utilized a system which combined a personal notification tool
with a community bookmark/recommender system. From this study the au-
thors were able to create heuristics about how people decided what kinds
of location information to share. In summary, most people were willing to
share information about public places, any messages about typical activities
occurring at those places, and places they wish to recommend. Places that
they do not want to share are locations that include names (especially those
of children), residences, or private workplaces.

Ludford et al. also investigated the motivations for sharing place infor-
mation. The results are comparable to Kindberg et al.’s two-dimensional
taxonomy. Basically, the subjects mentioned four categories of uses: per-
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sonal organization, personal diary, collaborative place discovery and social
matching. For example, people can search for places in their vicinity when
in need of, and review/recall the places they have visited in the past months.
One person who had lived in the neighborhood for over 40 years noticed
a place two other people had bookmarked. Since he did not recognize the
place, he wanted to find out what it was. Another person said that if he
saw that a restaurant was popular with others, he would create a message
reminding himself to go there. Additionally, subjects wanted to meet others
who have bookmarks for the same lesser-known places. They took this as
an indicator of shared interests, and they wanted to use this information for
social matching [Ludford et al., 2007].

2.8 Summary

A large quantity of spatial data is produced by people engaging in various
everyday activities, on the one hand. People on the move have a growing
need for spatial assistance, on the other hand. In summary, there is a well
founded use case for capturing user-generated content and personal prefer-
ences about places and routes and making it available to everyone who needs
it in an adequate way. Figure 2.5 narrows down the elaborated scope of this
thesis, indicating a convergence of the described trends and technologies.
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Related Approaches and
Systems

The previous chapter raised two fundamental questions:

• How to capture long-term user preferences about places and routes?

• How to adapt shared spatial content to users on the move?

This chapter analyzes related research work and available commercial
systems with respect to these two questions. Special attention is put on
the suitability for mobile scenarios, context-awareness, and personalization
techniques employed in the examined systems. The chapter closes with an
evaluation of related work, revealing deficits and potential for improvements.

Existing approaches and systems typically deal with either places
or routes, but not both. Therefore, the chapter structure follows this
distinction and splits the discussion in two parts.

3.1 Places

On the one hand, currently there exists a vast number of commercial location-
based services supporting people on the move by means of providing on-site
information about places, often called points of interest (POI). On the other
hand, there is a series of academic research work on mobile context-aware
recommendation systems focusing on places. This section describes a selec-
tion of existing commercial applications and academic work in the field of
context-aware mobile place guides.
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Figure 3.1: Platial - “Who and What’s Nearby” (platial.com)

3.1.1 Platial

As mentioned in Chapter 2, user-generated content about places and routes
(personal opinions, reviews, statements of visit, etc.) is growing rapidly.
Individuals have been able to share place information online via explicit au-
thoring since the early days of Web 2.0. For instance, PlaceOpedia1 users
connect Wikipedia articles with locations on a map. Sites such as TripAd-
visor2 and Yahoo Maps3 allow people to write place reviews. Such sites are
starting to offer clients for mobile phones nowadays. This section describes
a selection of online services dealing with place recommendation.

Recently, several platforms like Platial4, Google Earth5, and other sites let
users associate tags, photos and videos with places, and retrieve information
about them on mobile phones. Platial also lets users see detailed information
about a place: the categories it belongs to (Food, Lodging/Hotel, Parks and
Nature, Art and Culture, etc.), the people that have been there, a textual
description, user comments, and attached photos (cf. Figure 3.1). Basically,
the content is contributed by users via the website. A mobile, location-aware
client is available for the Apple iPhone as well.

According to Platial’s homepage, users can add their own places, stories
and photos to the map and search or browse “millions” of places by select-
ing a desired place category, a user, or a tag. A simple keyword search is

1http://placeopedia.com
2http://www.tripadvisor.com
3http://maps.yahoo.com
4http://www.platial.com
5http://earth.google.com
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available as well.
Flagr6, a service similar to Platial, allows users to submit place reviews

via text messages from their phones (SMS). The message needs to obey a
certain structure and the service works for U.S. locations only.

3.1.2 Qype

Qype7 is an open platform for sharing local knowledge and advices about
places. Qype users can write place reviews, upload photographs of the places
they have visited, join groups to discuss their particular interests, and create
personal lists of their favorite places. Qype has more than two million unique
visitors per month, according to its homepage. There is no context-aware mo-
bile client for Qype – the website is the only channel for interaction. Users
can search for places by entering keywords, browsing through a predefined
taxonomy of place categories, or reading reviews from other users.

3.1.3 Whrrl

Whrrl8 is a mobile network that aggregates information as users visit differ-
ent places. It is a place review service that is wrapped up in a map mash-up
and a social network. Unlike Platial or Qype, Whrrl has been built from the
ground up as an integrated mobile and Web experience. To tell the system
about a place visit, the user has to explicitly check in via a mobile applica-
tion, a SMS, or the website. Explicit ratings, descriptions and reviews can
be specified along with user’s presence. Adding new places and moving ex-
isting ones on the map is supported via the web interface, as well. To search
for places, mobile users may specify what they are looking for by entering
keywords or names, e.g. pizza or music. Whrrl uses the distance from the
user’s current location, explicit place ratings by people in the user’s social
network and “other elements” to provide a ranked list of places and events
that are relevant to the user.

3.1.4 CitySense

The systems described so far focus on manual acquisition of short-time user
preferences, completely ignoring the opportunity to utilize long-term prefer-
ences. CitySense9 chooses a different approach. It is a mobile application for

6http://www.flagr.com
7http://www.qype.co.uk
8http://www.whrrl.com
9http://www.sensenetworks.com
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Figure 3.2: CitySense on a BlackBerry [Sense Networks , 2008]

local nightlife discovery and social navigation. CitySense shows the overall
activity level of the city, top activity hotspots, and places with unexpectedly
high activity in real time (Figure 3.2). However, it does not store informa-
tion about places – it links to Google to show what venues are operating at
hotspot locations.

CitySense learns about where each user likes to spend time and it pro-
cesses the movements of other users with similar patterns. Professor Tony
Jebara, Chief Scientist and Director of the Columbia University Machine
Learning Laboratory, has determined seven different groups (or tribes) of
people related to nightlife behavior, whereby each group has its own type of
destination. Users who go to rock clubs see rock club hotspots, users who
frequent hip-hop clubs see hip-hop hotspots, and those who go to both see
both. According to Professor Jebara, those destination types translate across
multiple cities – it becomes a lot easier to figure out where to go out in a new
city [Sense Networks , 2008]. Currently, however, CitySense only answers
the question “Where is everbody?”. In the future, the system is supposed
to know “Where is everybody like me?” by utilizing the aforementioned
groups concept. An excellent video giving an overview on how the CitySense
algorithm works can be found at [Sense Networks , 2008].

CitySense uses origin and destination data from taxis to model the city.
The original plan was to use data from mobile phone usage or other sensors.
However, the SenseNetworks founders were only able to get taxi data and
found that it could be used to get a very clear picture of how a city ebbed
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Figure 3.3: CityVoyager screenshots [Yuichiro and Masanori, 2006]

and flowed [Brady Forrest , 2008]. SenseNetworks is paying special attention
to personal data management and privacy. There are buttons in CitySense
to delete any data acquired in the last 24 hours and to delete all historical
data. After these deletions are made, personalized services will no longer
operate, but users always have this choice.

3.1.5 CityVoyager

CityVoyager is an academic-class city guide system for GPS-equipped mobile
devices which finds and recommends shops that match each user’s prefer-
ences. The basic idea behind CityVoyager is to apply the techniques used in
sophisticated recommendation systems, found in online shopping sites such
as Amazon.com, to real-world shopping [Yuichiro and Masanori, 2006].

Long-term user preferences are estimated from the user’s past location his-
tory. The analysis of history location data includes a place learning algorithm
that can detect users’ frequented shops by their proper names. Whereas on-
line recommendation systems estimate long-term preferences from the users’
online activity records, such as items bought or checked in the past, CityVoy-
ager estimates preferences based on their location history during shopping
in the city. It analyzes raw location data acquired using GPS and trans-
forms it into a list of each user’s frequently visited shops, which is stored
inside the server and used when making recommendations10. Rating values,
which indicate how fond the user is of each visited shop, are also calculated
automatically based on visit frequencies.

The recommendation process consists of two sub-phases: filtering and
adding weights according to certain geographic areas. Filtering of shops
is done using item-based collaborative filtering, a proven algorithm used in

10Section 6.1 analyzes existing algorithms for detecting place visits.
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Figure 3.4: Magitti’s Main Screen (left) and Detail Screen (right) [Bellotti
et al., 2008]

many existing recommendation systems11. The shops selected by the filtering
algorithm are weighted according to the areas in which they are located, with
large weight values being added to shops in the same area as the user, or in
areas with large transition probabilities. Areas are defined in CityVoyager
so that any two points located in the same area are easily accessible from
one to the other, e.g. by roads. Transition probabilities are calculated from
periodically plotted user locations, and a higher probability indicates more
chances of a user advancing to the area.

Shops picked out through the previous steps are shown using simple icons
on a map, on the screen of the client device (cf. Figure 3.3). A “metal de-
tector” interface uses auditory cues to convey information in an unobtrusive
way. Repetitive beeping sounds are emitted when the user is within a cer-
tain distance from a recommended shop, and the intervals between the beeps
become shorter as the user moves closer to the shop.

In summary, CityVoyager utilizes the current location and the movement
history as context types. A method for further narrowing down shops based
on prediction of user movement and geographical conditions of the city is
proposed, as well.

3.1.6 Magitti

Another academic-class system that uses several context types to avoid the
overload of leisure time offerings in dense urban areas is the academic proto-
type Magitti. Similar to CityVoyager, it can do so without the user having

11Section 6.6 deals with recommendation algorithms in more detail.
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Figure 3.5: Magitti – activity prediction process (left) and recommendation
system (right) [Bellotti et al., 2008]

to explicitly define their profile or long-term preferences.

Magitti’s Main Screen has a scrollable list of up to 20 recommended items
(places) that match the user’s current situation and profile (cf. Figure 3.4).
By tapping an item on the screen, a detailed description, a formal review,
and user comments are displayed. As the user walks around, the list updates
automatically to show relevant nearby places.

The system infers interests and activities from models that are learned
over time implicitly, based on individual and aggregate user behavior, such
as places visited, web browsing, and communications with friends [Bellotti
et al., 2008]. Magitti knows about current time, location, weather, store
hours, and user patterns. Five activities were derived from observations in
the authors’ field work: Eating, Shopping, Seeing, Doing, or Reading.

Magitti is unique in that it infers user activity from context and patterns
of user behavior and, without its user having to issue a query, automati-
cally generates place recommendations. Activity probability prediction is
based on a combination of patterns observed across the user’s demographic
population and individual behavior pattern. The population patterns were
derived from the data collected on Magitti’s target demographic in fieldwork
and from a Japanese Survey on Time Use and Leisure Activities [Japanese
Statistics Bureau, 2006]. Individual user behavior models are learned over
time by associating each venue in Magitti’s database with one of the five
activity modes that were observed in fieldwork, and modeling the frequency
of each mode by tracking user behavior. For example, if a user visits a retail
store, the system records that as being in the Buy activity mode; similarly
for visiting a restaurant or café, (Eat), theater or museum (See), gym or
park (Do), and reading of content on Magitti itself (Read). These recorded
location visits create models of the user’s individual activity preferences.

For a given user and context, the recommender computes the utility of
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each content item by combining results from a variety of recommendation
models (cf. Figure 3.5). For example, Magitti includes a Content Analysis
module that performs plain text analysis of the content of calendar appoint-
ments, viewed documents, and messages to extract information about the
user’s plans. The extracted information is used to infer the probability of
the user’s interest in activities at current or future times. The scores of items
that have previously been seen are reduced, providing diversity to the set of
recommended items. When all items have been scored, the top four results
are displayed as a list on the Main Screen, ordered by their total score.

3.1.7 MobyRek

MobyRek is another academic-class context-aware tourist recommendation
system [Ricci and Nguyen, 2007]. It lets users specify preferences for places
such as hotels and restaurants, and it improves its recommendations over
time. The system derives the user’s long-term preferences, such as a prefer-
ence for non-smoking rooms, from several recent interaction sessions between
the user and the system and by letting users explicitly define a set of stable
preferences (for example, the payment method). These stable preferences re-
main true throughout the sessions. In contrast, session-specific preferences,
such as a desire to eat pizza, are transient. Session-specific preferences in-
clude both contextual preferences (i.e. space-time constraints) and product
feature preferences (e.g. pizza restaurant, payment with credit cards).

MobyRek elicits user preferences through structured human-computer di-
alogs. A user’s goal when participating in such a dialog is to find desired
products, and the system’s role is to help the user quickly and effectively
find them. During a dialog, the system might either ask the user for a pref-
erence or propose a product. The user either answers the system’s question
or criticizes its proposal.

In particular, the system can raise a selective question to refine user
preferences when the number of candidate products is unsatisfactory – for
example, when the system found no items or too many items. When reply-
ing, the user can indicate, remove, or modify some conditions so that the
system can retrieve a better result set (Figure 3.6). Over time, the system
builds a user’s long-term preference pattern.

When a recommendation session ends, whether successfully or not, the
system retains it as a case. That way the system can exploit past user rec-
ommendation sessions in making new recommendations for that user and
similar future use cases. For instance, suppose user A selected a particular
hotel before travel and that user B previously selected the same hotel and a
restaurant. The system would consider that restaurant to be a good choice
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(a) Recommended restau-
rants

(b) Users can browse
them...

(c) ... and critique them.

Figure 3.6: The MobyRek user interface [Ricci and Nguyen, 2007]

for user A. The session-specific preferences have the features of a restaurant
selected in another travel by a user who made similar selections, in a similar
contextual situation, with similar default preferences12.

3.1.8 Crumpet

Crumpet is a EU project aiming at the “creation of user-friendly mobile
services personalized for tourism” [Schmidt-belz et al., 2002]. The user can
request information and recommendations about tourist attractions, restau-
rants and tours. The system provides pro-active tips when the user gets
near a sight that might be of interest, supports interactive maps showing the
position of the user as well as interesting sights. Its architecture foresees an
external customization approach allowing the integration of various service
and content providers via a dedicated interface.

Crumpet considers the following context types: location, device, network,
and user preferences. Transformation of GPS coordinates to logical locations
encompasses, in a first step, sending only significant location changes to the
server and based on that, utilizing separate geo-coding services to infer ad-
dresses from the given coordinates in a second step. The logical device con-
text is taken into account in terms of the device type determining, e.g., size
of display, color depth, and raster vs. vector graphics capability. The logi-
cal network context is considered with respect to the quality of networking
service (QoS) and the type of wireless connection that is available (WLAN

12This approach belongs to the category of Case-Based Reasoning.
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or GSM). The device context and the network context together define how
much and what kind of information should be sent to the user. For example,
if the network connection is poor, it is not practical to send large quantities of
data, such as movie clips. If the user is using a mobile phone with text-only
capabilities, he cannot receive images even if the network connection is good.
The user’s interests representing the logical user context are learned dynami-
cally by tracking user interaction. In Crumpet an adaptive user model learns
user interests from the user’s interaction with the system. When a user asks
for more information about an object, this adds a small amount to the evi-
dence that a user is interested in objects with these features, more than in
others. If a user asks for more and more details about the same object, or
even asks for directions to a site/restaurant, this adds a greater amount to
the evidence that she or he is interested in such services.

Adaptations are performed by locating and querying suitable content and
service providers and adapting the query outcome to the aforementioned con-
text types. According to the user’s position and interests a list of places of
interest is generated and displayed.

3.1.9 Evaluation

In this section some major issues with the described approaches are pointed
out, indicating possible areas for improvement. As a general observation,
there are fundamental differences between the commercially available systems
and the academic-class prototypes in this field. Accordingly, the evaluation
is split in two parts.

Commercial platforms

Commercial platforms like Platial and Whrrl are gaining a lot of momentum,
shaping a new class of services – mobile social applications. Their primary
aim is the linking between users by imposing a virtual digital media and
metadata layer on top of spatial data. They do not utilize automated per-
sonalization techniques – search is usually performed by manually selecting
place categories, tags, and by entering keywords. The user has to manually
go through written place reviews and decide which users to trust. This often
imposes significant overhead and does not meet the need for quick decision
support in mobile scenarios.

A further ramification of relying on explicit user comments and reviews
is the introduced bias of information. Not everybody is willing or able to
take the time and write some meaningful text about a recently visited place.
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Moreover, users’ opinions about a place might change over time. These as-
pects result in a biased set of stated opinions available on such platforms.

Finally, current location is typically the only context type used in com-
mercially available systems, whereas long-term user preferences regarding
places are not considered.

CitySense differs from those systems as it acquires and revises long-term
user preferences based on movement history. These user profiles are used to
present personalized views on popular spots in the city. CitySense’s other
distinguishing aspect is its focus on privacy issues. However, CitySense has
no knowledge about real places such as clubs or restaurants – the user has to
perform extra steps to get the desired information, i.e. performing an Inter-
net search for places. The system has been designed for maximum usability
by fully automating the data collection and aggregation process, abandoning
the idea of an accurate identification of actual places the users have visited.
In city areas with high place density this method is susceptible to errors and
the resulting fuzziness might lead to distorted user profiles. CitySense is still
a beta product. Currently, it is available only on the BlackBerry and only
contains data for San Francisco, CA.

Academic Prototypes

CityVoyager is somewhat similar to CitySense in the way that it tries to
create user profiles from movement history. However, the approach it takes
differs as it considers established place locations and tries to recognize actual
place visits. In [Yuichiro and Masanori, 2006], the place detection algorithm
showed rather disappointing results – it gave only 31% true positives. More-
over, the place detection algorithm is tailored to shops only, considering only
places that are represented as single points on the map. Places which exist
continuosly in the two-dimensional space such as parks can not be considered
by CityVoyager’s algorithm. Nevertheless, this makes the algorithm very ef-
ficient for this particular class of places. However, authors also report that
the estimation algorithm will inevitably have trouble when a user frequently
visits two proximate shops.

Magitti employs a unique way of pro-active place recommendations
based on activity prediction algorithms. The system infers interests and
activities from models that are created and maintained without any user
interaction. This includes text analysis of messages sent and received,
websites and documents opened, and places visited in the past. However,
nothing is said about the method for detecting place visits. Another issue is
the requirement that all places must be classified manually into exactly one
of the five activity categories. This makes the places database difficult to
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maintain. The plurality of employed recommendation algorithms increases
the model complexity, results in low transparency of recommendation
results and lowers the trustworthiness. The lack of explanations or special
visualization techniques for the four recommended items further rises
questions regarding user acceptance.

MobyRek elicits user preferences through structured human-computer
dialogs. This critique-based approach might seem appropriate for use cases
such as trip and hotel planning. However, the time required to interact with
MobyRek might be too long for quick everyday decisions regarding activi-
ties such as spontaneous going out, having a drink, relaxing, etc. Moreover,
users are known for not giving very much feedback on the appropriateness
of presented items, particularly not negative feedback (see the discussion
in [Schwab and Kobsa, 2002]).

Crumpet allows the users to inspect their preferences model and modify
it. The preferences are learned by analyzing user interaction with the sys-
tem. Unlike CityVoyager, Crumpet decided to drop the idea to use user’s
movements to infer interests as the localization was found to be not precise
enough to automatically determine the user’s logical position (place) without
doubt.

Furthermore, all described research-class systems rely on a pre-filled
places database, whereas commercial systems like Qype entirely rely on
users to maintain the places database. Academic city guides employ no
mechanisms for considering user contributions regarding place locations in
a collaborative way, making the systems highly dependent on 3rd party
(commercial) content providers.

User preferences are either collected automatically by observing user in-
teractions (Crumpet) and inferring place visits by employing some spatial
place detection algorithms (CityVoyager), or manually through a sequence
of questions (MobyRek). None of the approaches alone provided satisfactory
results, leaving a semi-automatic approach for acquisition of user preferences
an unexplored option.

Adaptations on the information level are offered by filtering and sorting
items according to the user’s preferences and different context types. On the
presentation level, the user’s current position is highlighted on the map and
recommended objects of interest are displayed without any explanations or
visual distinctions between them regarding their inferred relevance. CityVoy-
ager’s unique beeping approach yielded rather unsatisfactory results as it was
found to be sometimes annoying and embarrassing in public [Yuichiro and
Masanori, 2006].
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3.2 Routes

With the elevated price of spatial data sets and the unavailability of data
meeting the needs of specific user groups it is not surprising that the idea
of collecting spatial data by voluntary contributors emerged. Mountain bik-
ers were among the first communities to feel unhappy with the commercially
available spatial data products: their cartography focuses on roads and much
of the thematic information is useful especially to car drivers. As a conse-
quence, several biker communities started to collect GPS track data and
published their data through web portals such as the GPS-tour.info portal13.
Bikers download tours that others have uploaded and use them for planning
and navigating their own tour.

GeoSkating14 is a similar project, aiming at the skating community. While
skating, GPS position data is published directly to a server through a mobile
phone. At the same time the skater can enrich GPS data with road surface
ratings and by sending pictures and videos from the phone. The server will
draw geographic maps showing road quality through coloring (red, yellow,
green). Pictures and videos are presented on the GPS locations where they
were captured. Skaters can also be followed in real-time over the map while
skating.

(a) TopoFusion Main Screen (b) Track elevation profile

Figure 3.7: TopoFusion screenshots

13http://www.gps-tour.info
14http://geoskating.com/
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(a) Several GPS tracks... (b) ... reduced to a single route segment!

Figure 3.8: TopoFusion track reduction

3.2.1 TopoFusion

In contrast to the aforementioned websites, collaborative acquisition and
aggregation of spatial data constitutes a central concern for the digital trail
library described by [Morris et al., 2004] and commercially available as Topo-
Fusion15. TopoFusion is a fully featured GPS mapping program for the PC
used to display, scroll and zoom over maps, while overlaying GPS tracks
(routes) and supporting information on top of them.

The basic representation of a route is a GPS track log, recorded as recre-
ators travel on routes. As users complete trips, the GPS track logs of their
trips are voluntarily submitted to the central library. A major problem with
real-world GPS data is that GPS track logs will overlap and intersect each
other. TopoFusion’s distinguishing feature is the ability to create aggregated
route networks from a collection of overlapping and intersecting GPS track
logs. Aggregation is dealt with at the level of geometrical information using
algorithms that compute routes by averaging over many GPS tracks. Topo-
Fusion identifies sections of tracks that are close and similar enough such that
they are actually representations of the same route or road. The algorithm
averages these segments to eliminate duplicates [Morris et al., 2004]. Figure
3.8 shows several GPS tracks (a) being combined to a single route segment
(b). Since this thesis builds on TopoFusion’s route aggregation algorithm, a
comprehensive description is given in section 6.5.

15http://www.topofusion.com
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Figure 3.9: Trailguru screenshot

3.2.2 Trailguru

Similar to TopoFusion, the Trailguru project16 aims to combine GPS track
data from multiple trips to produce a comprehensive route database. How-
ever, the website reveals no information about the used aggregation algo-
rithms. The results seem to be comparable to TopoFusion’s, though. Trail-
guru has no PC or mobile client – user interaction is handled via the website
only (cf. Figure 3.9).

Tracks are categorized to several predefined activity categories, such as
Mountain Biking, Hiking, Running, and Skiing. Users can upload, share and
explore routes and attached photos in Google Maps and Google Earth, en-
gage in forum discussions and subscribe to feeds. Registered users can also
create new routes by manually selecting route segments. Trailguru makes
several statistics available to users, including total kilometers in the last
weeks/months.

3.2.3 Evaluation

Services like GPS-tour.info and GeoSkating are basically used to generate
multimedially annotated maps. They do not aggregate the collected spatial
data.

An advantage of combining multiple submissions for identical route seg-
ments as employed in TopoFusion and Trailguru lies in the increased quality

16http://www.trailguru.com
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of the data. GPS errors can be corrected by averaging the segments together.
The result will be a better representation of routes. Since it is impossible to
verify whether routes submitted actually exist, some sort of reliability mea-
sure using the number of submitted tracks that cover a segment has been
suggested in [Morris et al., 2004] as well.

Even though systems like TopoFusion aggregate content and help avoid-
ing information overload, they do not offer any personalized adaptations
of shared content. This keeps the burden of analyzing the vast amount of
uploaded content and selecting relevant routes on the user’s side. Using long-
term user preferences or other methods for personalization purposes is not
explored by any of the mentioned route guides. Besides the user ID, any re-
lation to the person who uploaded the route and their preferences is basically
lost and must be manually explored, similar to commercial place guides like
Platial.

There are no dedicated mobile client applications for TopoFusion or Trail-
guru – routes must be uploaded manually from GPS-enabled devices to the
website. Browsing routes is also possible via the website only.

3.3 Overall Analysis

This chapter introduced and evaluated several applications and research pro-
totypes dealing with places and routes. In a nutshell, the related approaches
can be divided into three large groups:

• commercial systems dealing with places, with the primary aim at link-
ing users,

• systems relying on 3rd party databases of pre-classified places dealing
with personalized place recommendations, and

• systems for uploading and browsing routes, without significant person-
alization techniques.

Commercial systems dealing with places let users explicitly specify ratings
or written reviews about the places they have visited. While such systems are
effectively addressing the social and affectional aspects of sharing multimedia
content and annotations about places (cf. also the discussion about motiva-
tions in section 2.6), their suitability for an unobtrusive and comprehensive
acquisition of user preferences and collaborative place discovery seems to be
limited.

The focus of route-oriented applications lies on the data collection part.
To some extent, data is also aggregated to help reduce the burden on users
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when browsing the database. However, a digital route library should account
for the differences in preferences and information needs between users. Mo-
bile scenarios characterized by limited user attention time demand further
optimizations of the information flow besides spatial aggregation techniques,
as offered by personalized recommendations.

Academic place recommendation systems, on the other hand, focus on
such personalization techniques to avoid information overload. Commonly,
these systems deal with the acquisition of long-term user preferences regard-
ing places by observing the user’s behavior. However, the fully automatic
approach delivers unsatisfactory results when used without any additional
user interaction, whereas approaches based solely on structured dialogs and
explicit feedback have arguable effectiveness and limited potential for large-
scale success.

Current place-oriented systems model places as single points in space (i.e.
as “points” of interest). However, observed spatial behavior could also be
used to derive spatial characteristics of places as well. While route-oriented
systems such as TopoFusion aggregate GPS tracks to accurately describe
routes, location data gathered from multiple visits might be aggregated in
order to describe geographic shapes of places. More accurate information
about place shapes could further improve the process of acquisition of user
preferences and the assistance of users on the move.

Context-awareness
Personalization

Aggregation of 
spatial content

?

Route libraries
TopoFusion
Trailguru
GeoSkate
GPS-tour

Place recommenders
CityVoyager
Magitti
MobyRek
Crumpet

Social Platforms
Platial
Whrrl
Qype

Figure 3.10: Positioning of related work categories
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To the best of my knowledge there is no application trying to combine
places and routes. For example, when planning a jogging or hiking route,
users might be interested in the surrounding places, as well. Significant places
such as castles, churches, or lakes might be exactly what a user is looking for
when going for a run. Existing digital route libraries only deal with routes
themselves, however.

Figure 3.10 summarizes the drawn conclusions about the analyzed state
of the art, revealing a potential gap between the two related groups of ap-
proaches.
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Introducing Crumblr

This chapter describes the core concepts behind Crumblr – a novel mobile
application dealing with places and routes, prototypically developed in the
course of this thesis. First of all, a detailed introduction to the central goals
and challenges addressed by Crumblr is given, describing the main contri-
butions of the thesis from a conceptual point of view. This is followed by a
comprehensive description of the developed prototype in the form of realistic
user stories, relating them to the introduced concepts.

4.1 Core Concepts

This section provides a high-level overview of Crumblr’s core concepts. The
proposed concepts and ideas are motivated by the background developed in
Chapter 2 and the analysis of related projects in Chapter 3. The overview
of Crumblr’s core goals and concepts prepares the more detailed discussion
of use cases given in section 4.2.

4.1.1 Semi-Automatic Acquisition of Long-Term User
Preferences

The acquisition and revision of stable, long-time user preferences regarding
places and routes is not considered in today’s commercially available mobile
recommender systems. However, user profiles are indispensable when trying
to implement personalization techniques. People develop personal prefer-
ences regarding places and routes while engaging in everyday activities. The
proliferation of mobile Internet technology offers several ways to obtain de-
tailed clues about the people’s spatial preferences. As analyzed in the previ-
ous chapter, commercial systems such as Platial provide a platform for users
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to share place reviews and to explicitly rate places. Undeniable benefit re-
sults from explicitly capturing place or route reviews in situ – very detailed,
emotionally rich reviews can be captured this way. However, these reviews
are likely to be not very representative as the number of required actions to
post such reviews is very high and the time available in mobile scenarios is
limited. This would very likely lead to only a small subset of users (presum-
ably the “tech-savvy” ones) willing to perform the required steps to upload
and share written reviews, leaving a user in need of place recommendations
with a biased set of unstructured reviews to manually choose from.

Related academic work tries to capture stable personal preferences by
either employing an implicit, fully automatic, observation-based approach or
by explicitly engaging in direct dialogs with the user. Crumblr is positioned
between these two extremes, trying to find a good balance between the unob-
trusiveness of automated user observation and the accuracy of explicit user
interaction. One of Crumblr’s fundamental goals is to employ a novel semi-
automatic approach to gather data about place visits and to derive long-term
user preferences from this data. This approach should be considered comple-
mentary to the purely manual approaches employed by existing commercial
systems.

The questions “how to observe the user” or “what aspects to observe”
must be answered when trying to base a long-term user profile on user ob-
servations. Crumblr is based on the idea that a person’s visits to places and
routes in the physical world can be an implicit form of expressing prefer-
ence. [Froehlich et al., 2006] investigated the relationship between explicit
place ratings and implicit aspects of travel behavior such as visit frequency
and duration of stay. The results showed that, first, sensor-triggered expe-
rience sampling is a useful methodology for collecting targeted information.
Second, despite the complexities underlying travel routines and visit behav-
ior, there exist positive correlations between place preference and features
such as the visit frequency and duration of stay.

Crumblr employs a method somewhat comparable to CityVoyager’s recog-
nition of place visits and Magitti’s activity estimation (cf. Chapter 3). Crum-
blr is designed to estimate long-term user preferences from user’s past loca-
tions and activities. It builds upon previous work on extracting places from
traces of user’s movements gathered by GPS or other location sensing tech-
nologies. In its essence, this thesis proposes a novel place detection algorithm
based on a combination of clustering methods and detection of GPS signal
loss events. Crumblr periodically samples the user’s position data via GPS.
Crumblr’s core concepts related to sampled GPS data are based on the fol-
lowing two observations:

44



4.1. Core Concepts

• If several GPS position samples relate to the same logical location (e.g.
a park), those samples are aggregated to one logical place visit – the
aggregation is based on a clustering algorithm considering both spatial
and temporal aspects. For example, when a person spends more than
15 minutes in one geographic region, this is recognized as a place visit.

• When a loss of the GPS signal has been observed (i.e. the GPS module
is unable to obtain a position fix) and if the next observed GPS posi-
tion is close enough to the last valid one, it is assumed that the person
has entered and left a building. Crumblr will recognize this case as a
visit to the building.

Specifically, the algorithms were designed to address the noisy and sparse
nature of GPS data caused by inherent GPS errors and long data sampling
intervals. The long GPS sampling intervals have been chosen in order to
avoid quick battery depletion that can be observed on some of the newer
mobile devices equipped with GPS. Based on the detection of place visits,
comprehensive long-term preferences can be derived. A detailed analysis of
Crumblr’s algorithms dealing with extracting place visits from GPS data is
given in Chapter 6.

To address the identified accuracy problems arising from a fully auto-
mated place recognition approach, Crumblr periodically presents the identi-
fied place visits on a map, giving the user a comprehensive overview of their
past spatial activities. Additionally, Crumblr uses this “point of interaction”
to let the user confirm the estimated activity that the user has performed at
each place. Activity estimation is based on aggregated history data. After
the inevitable initial cold start phase inherent in all systems relying on user-
generated content, Crumblr should have collected enough data to recognize
the performed activities with good accuracy.

Figure 4.1 summarizes the outlined approach employed by Crumblr for
semi-automatic place and activity detection. After analyzing the collected
trace of GPS data, Crumblr has recognized visits to the cafe Venezia and the
Irish Pub. By examining history data, both places are mapped to the Bars
& Pubs activity category. Next, these suggestions need to be verified by the
user, increasing the data quality and reducing privacy issues as well. As a
final step, data is uploaded to the server, where it is persisted and serves
for future place and activity recognition. Ideally, the system has correctly
recognized the past places and activities and the user only has to confirm the
act of uploading the data to the Crumblr server. The quality of automati-
cally recognized visits is improving over time, which is a consequence of the
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Point of user interaction
(recognized places and activities are checked by the user)

Detection of place visits Activity Recognition
 from sampled GPS data
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Alice Bars & Pubs
Bob Bars & Pubs
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...

Place Activity
Irish Pub
Irish Pub
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Irish Pub Get Together
Cafe Venezia

 from aggregated past data

[Alice, Cafe Venezia, Bars & Pubs]

[Alice, Irish Pub, Bars & Pubs]
Update geographic shapes
of Cafe Venezia and Irish Pub

Figure 4.1: Place and activity detection process in Crumblr

utilized network effect. This aspect has already been outlined in Chapter 2
and is further described in the following subsection dealing with data aggre-
gation. The feedback loops in Figure 4.1 express the improvement cycle in
Crumblr.

Preferences regarding routes. In contrast to places, the acquisition of
long-term preferences regarding routes is handled in a different way. Crum-
blr deals with recreational routes such as jogging, biking, and hiking routes.
A constant, automatic observation similar to the recognition of place visits
would lead to a large amount of useless data unsuitable to automatic filtering.
Especially the start and end points of routes are better captured manually.
Route visits are therefore not automatically observed in the background but
instead require the user to explicitly start and stop recording the route.

Personal motivation. Systems utilizing user-generated content usually
have to deal with a potential problem called “cold start”. Specifically, the
cold start problem implies that the user has to dedicate an amount of effort
using the system in its blank state – contributing to the construction of the
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spatial database and their user profile – before the system can start providing
full functionality.

Besides letting the system learn more about the user, the explicit user
interaction step performed prior to uploading the observed data also serves
another purpose. As discussed in section 2.6, users are willing to share loca-
tion information for both personal and social purposes. By giving the users
an overview of their past places and activities, Crumblr is accounting for the
personal motivation for reviewing and reminiscing in the past events. This
aspect should also make the system usable in its blank state.

Privacy issues. Semi-automatically collected data suffers less from privacy
issues than fully automated user tracking such as employed by CityVoyager.
Recent research on sharing location information has shown that people are
not willing to share their home or work location, as already outlined. By
letting the user take action during/after the aggregation process and giving
them the control over the collected data before uploading it to a central au-
thority, privacy issues become less critical. Users always have the option not
to share specific place visits. Moreover, related systems providing location-
based services employ some sort of notification mechanisms to alert the user
about interesting events or messages in the user’s surroundings. In order to
accomplish this, the mobile client needs to periodically reveal the user’s loca-
tion and identity. Crumblr has been designed to never upload user’s location
data to the server without user’s full awareness.

Activities. Besides places and routes, the activities play an important role
in Crumblr as they constitute a core component of the user’s long-term pref-
erences. However, to make this kind of data fully applicable to formal models,
the concept of activities is formalized by introducing an activity taxonomy.
Table 4.1 shows the taxonomy of depth two, which is currently utilized by
Crumblr. The design of this taxonomy has been driven by two conflicting
goals: to optimize the user experience by reducing the depth and the overall
size of the taxonomy on the one side, and to include all currently observ-
able activities common to popular social media sites such as Qype and Flickr
on the other side1. Being a trade-off between these two goals, the result-
ing proof-of-concept taxonomy therefore makes no claim of being complete.
Moreover, the child activities are not complete refinements of their parent

1The activity taxonomy has been created within the scope of both the Crumblr and
Captchr projects. The Captchr project has been developed by Matthias Käppler in the
course of his diploma thesis at the University of Kaiserslautern. The relation between the
two projects is outlined in the next chapter.
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Nightlife & Events Sports & Wellness Infotainment
Clubbing Tennis Museums
Bars & Pubs Soccer Theaters
Party Basketball Shows
Get Together Water & Beach Fairs & Exhibitions
Music Events Biking Conf. & Conventions

Baths & Spas Animal Parks
Jogging
Fitness
Bar Sports

Food & Drink Entertainment Outdoor & Travel
Chinese Food Cinemas Leisure in Nature
Mexican Food Amusement Parks Walking
Italian Food Gaming & Gambling Hiking
Turkish Food Adult Entertainment Sightseeing
Greece Food
Fast Food
Cafes

Table 4.1: The activity taxonomy used by Crumblr

activities. Parent activities represent subsuming abstractions of their child
activities.

4.1.2 Aggregation of Spatial and Contextual Data

If two people have visited the same place, it is highly unlikely that the GPS
data captured during these visits will be identical. In order to effectively
recognize where the user has been, data from multiple place or route visits
must be aggregated. Furthermore, when designing an approach to recom-
mend places and routes, spatial data alone is not sufficient. Effective data
aggregation techniques are considered indispensable and constitute a core
concept in Crumblr.

Route model

When considering routes, the aggregation of GPS tracks is based on previous
work presented in TopoFusion (cf. Chapter 3). Like TopoFusion, Crumblr
creates aggregated route networks from a collection of overlapping and inter-
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                  Previous work from
                       TopoFusion

Proposed
improvements

Context = (user, performed activity)
Legend:

TopoFusion

Crumblr

Spatial route data layer

Contextual data layer

Figure 4.2: The two-layered route network model in Crumblr

secting GPS track logs. It identifies tracks that are actually representations
of the same route or road and averages them to eliminate duplicates.

Several improvements to TopoFusion’s aggregation algorithms are sug-
gested and the route network model is extended with contextual data. The
context elements captured for this purpose are the user ID and the activity
performed on the route. This extension brings routes and places to the same
conceptual level, making both entities suitable to similar recommendation
models (cf. Figure 4.2). Uploaded GPS tracks are automatically aggregated
in a network of routes (more precisely: route segments) that is stored on
the Crumblr server. A detailed discussion about the network aggregation
algorithms is given in Chapter 6.

Place model

Every place or route visit further describes the geographic properties such as
the shape of the place or route in Crumblr. Information about the geographic
shape of a place is used to improve the aforementioned visit recognition pro-
cess. For example, when a user has visited a large place such as the Central
Park in New York, a system that is aware of the park’s geographic shape
is able to correctly detect this visit with higher probability than a system
that models a place as a single point in space. The latter place model is
employed by all related projects, as already outlined in Chapter 3. The in-
formation about the geographic shapes is co-created by Crumblr’s users –
every uploaded place visit further describes the shape of the place. Figure
4.3 illustrates an example of the proposed method for updating place shapes.
An existing place shape (green) is updated by a recognized place visit (or-
ange), yielding the new “averaged” place shape (blue). Additionally, the
effect of single updates on a place shape is limited by employing a specific
weighting method. In theory, this approach should lead to the convergence
of the computed shapes towards the real-world shapes of places. In practice,
it is expected that this approach will significantly improve the suggestions
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PlaceShape

Visit

PlaceShape
new

Figure 4.3: Old shape (green) and a new place visit (orange) result in new
place shape (blue)

provided when recognizing place visits. A detailed discussion about the place
shape aggregation algorithms is given in Chapter 6.

Aggregated spatial and contextual data is used to describe both the users
and the spatial entities in Crumblr. By adding the notions of the user and the
activity to the spatial model, additional value is derived from the aggregation
of spatial and contextual data. On the one hand, every place or route visit
provides additional clues about the user’s interests. As already outlined, by
aggregating this data over time, Crumblr estimates users’ long-term interests
and favorite places and routes. Similarities between users can be computed
in order to yield personalized recommendations and to promote user inter-
action. On the other hand, every place or route visit further describes the
places and routes as well. Besides the spatial characteristics, patterns in the
contextual layer can be mined in order to reveal potentially interesting clues
about further aspects of the place or route segment in question. Examples
for such patterns are popularity trends, the distribution of visits over time,
and the distribution of the performed activities.

To summarize this important and distinguishing idea behind Crumblr:
the users describe the places and routes they visit, whereas in turn the vis-
ited places and routes describe the users as well.

4.1.3 Personalized Recommendations of Places and
Routes

The previously stated goals, acquisition of long-term preferences and data ag-
gregation, enable personalized recommendations of spatial content. To assist
users on the move, information about places and routes is filtered according
to the user’s context. The user’s current location, the purpose of use and the
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user’s movement history (long-term preferences) are the context dimensions
used by Crumblr when recommending places and routes.

The recommendation process in Crumblr consists of two steps. First,
the items (places or routes) are filtered according to the user’s current loca-
tion, an explicitly specified maximum distance to the current location, and
the activity to be performed. Second, the filtered items are rated accord-
ing to several components of the recommendation model. The filtered and
rated items are returned to the mobile client, which is responsible for the
visualization of items.

The recommendation models for places and routes are conceptually in-
troduced below. The discussion assumes a general user of the system called
“Alice” in need of place or route recommendations. The algorithms behind
each component of the recommendation model will be described in more
detail in Chapter 6.

Recommendation model for places

When recommending places for Alice, the following recommendation criteria
are utilized in Crumblr:

• Places preferred by generally similar users: General user simi-
larity is a concept realized by the Captchr system and will be discussed
in section 6.6.1. Basically, if two users behave similarly with respect to
the places they visit, the activities they engage in, and the time slots
they are usually active in, these two users have high general similarity.
Therefore, places preferred by users generally similar to Alice are rated
high.

• Activity similarity: Places preferred by users similar with respect to
the specified activity are rated high. For example, compared to Alice,
the users having similar preferences regarding Pubs & Bars are consid-
ered a good choice for recommending other Pubs & Bars – their favorite
places for Pubs & Bars are rated high, in this case.

• Absolute popularity of places: The total distribution of all users’
visits in the region reveals the most frequented places with respect to
the chosen activity. This popularity is absolute in the sense of neutral-
ity to the user profiles attached to place visits – the place rating for
each place depends on the total number of visits regardless of the users
behind these visits.
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Recommendation model for routes

By imposing a layer of contextual data, i.e. user identities and performed
activities, on top of spatial data, the routes become applicable to various rec-
ommendation criteria as well. When recommending routes to Alice, Crumblr
uses the following criteria to rate route segments in the aggregated route net-
work:

• Activity similarity: Route segments preferred by users with similar
preferences regarding the chosen route activity are rated high. For ex-
ample, if Alice usually prefers the same jogging routes as Bob (maybe
because they both have similar levels of fitness), Bob is considered sim-
ilar to Alice regarding jogging. Bob’s favorite route segments will be
rated high, in this case.

• Dedication to the chosen activity: For each route segment, Crum-
blr calculates the percentage of the desired activity (e.g. jogging) com-
pared to the total number of visits to this segment. The resulting rating
for the segment is directly proportional to the calculated percentage.
For example, a route segment might only be 26% dedicated to jogging,
because there were other users who frequently used that route segment
for other activities such as biking and hiking. One might want to avoid
bikers and hikers on the road and therefore prefer other routes.

• Distance to relevant places: In addition to the specified route activ-
ity, Alice can specify what kind of places she would like to have along
the routes. For example, while hiking, Alice might want to indulge in
sightseeing. In this case, Crumblr’s rating for a route segment suitable
for hiking would correlate negatively with the segment’s distance to
sightseeing places2.

• Absolute popularity of route segments: The total distribution of
all users’ visits in the region reveals the most frequented route segments
with respect to the chosen activity. This popularity is absolute in the
sense of neutrality to the user profiles attached to the segment visits –
the segment rating for each place is directly proportional to the total
number of visits to this segment.

2Crumblr does not explicitly categorize places or routes– an item’s suitability for an
activity is derived from the aggregated history data.
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4.1.4 Adaptive Visualization

Adaptive visualization techniques need to be employed on the mobile client
to enable quick decisions, addressing the limited time available for user inter-
action in mobile environments. Therefore, in addition to filtering techniques,
Crumblr adapts the visual representation of recommended items to their es-
timated relevance to the user – the lower the estimated relevance, the more
transparent the item appears on the map display. As the user can quickly
spot the most relevant items on the map, this technique promises to acceler-
ate the user’s decision process.

Additionally, a structured visualization approach consisting of several in-
dividually selectable layers on the geographic map is chosen as a means to
explain the estimated relevance of recommended items to the user. Instead
of trying to combine the individual ratings in a single, less meaningful num-
ber, Crumblr lets the user individually choose from the rating criteria. Each
layer reflects a single component of the recommendation model (e.g. “dis-
tance to relevant places”, “preferred by similar users”). Furthermore, textual
explanations of the estimated relevances are constructed on the server and
displayed on the mobile client. The explanations are driven by the nature of
the utilized component of the recommendation model. For example, when
recommending favorite places from users having similar “Cafes” preferences,
the identities of the most similar users are displayed on demand, promoting
further interaction and socializing between users as well.

By combining visualization techniques with textual explanations, the
complex recommendation model is expected to become transparent to the
user, increasing the system’s trustworthiness and overall acceptance. For
example, Magitti does not provide any kind of explanation for the recom-
mended items and completely hides the components of the recommendation
model. A user study around Magitti showed that the users miss explanations
and perceive the application as not trustworthy [Bellotti et al., 2008].

4.1.5 Summary

Figure 4.4 provides a visual presentation of Crumblr’s life cycle. The users’
spatial behavior is semi-automatically captured via mobile clients. It is ag-
gregated and stored on the server, enabling personalized recommendations
of shared content. After getting recommendations, the users visit places and
engage in activities, implicitly closing the feedback loop.

Crumblr makes no claim of implementing the best approach to address
all the outlined challenges – the main goal of this project is a prototypical
implementation of the proposed ideas on a novel platform for mobile devices,
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Crumblr

User
Observation

Personalized
Recommendation

Data
Aggregation

Figure 4.4: Crumblr’s life cycle

Google Android.

The project’s name, “Crumblr”, is based on the term “bread crumbs”:
similar to dropping a bread crumb trail as the user travels across the land-
scape, a GPS trace of sampled locations is collected. Crumblr analyzes these
bread crumb trails in order to extract objectively observable local knowl-
edge in form of preferences with respect to places and routes. By building
a descriptive model of the involved entities (users, activities, places, routes),
personalized recommendations can be provided in order to assist users on
the move.

4.2 Use Cases

After the core concepts have been introduced, this section demonstrates
Crumblr’s user interface and use cases via user stories. A discussion about
the implementation-related aspects such as the system’s architecture, the
technologies utilized, and the algorithms employed ’behind the scenes’ is
given in the following chapters.

4.2.1 Semi-Automatic Recognition of Place Visits

Alice has decided to follow a friend’s advice and give Crumblr a try. After
installation, the application spawns a background service which is constantly
monitoring Alice’s location via the integrated GPS module. Crumblr does
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(a) Crumblr has recognized a visit to
“Gruene Wiese”.

(b) Of course, the user can select another
nearby place if Crumblr’s recognition was
wrong.

Figure 4.5: Selecting the correct place

not require network connectivity when collecting location data. The recog-
nition of place visits is executed while the device’s battery is charging, under
the condition that a reasonable amount of location data has been collected.

After a few days the application notifies Alice that it needs her attention
– the Crumblr Visit Recognition Service has completed its work and a small
notification icon has been displayed on the status bar. This service is the part
of Crumblr responsible for automatically recognizing visits to places. After
clicking on the notification icon, the Cluster Identifier (CI) dialog is launched,
as shown in Figure 4.5(a). The purpose of the CI dialog is to guide the user
through the semi-automatic visit recognition process (cf. section 4.1.1). By
using the navigation pad on her mobile device, Alice can tap through the
recognized place visits. If she wants to delete a visit (i.e. she does not want
to share it), she can tap on the “Delete” button on the screen.

In the upper part of the screen, details about the selected place visit are
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displayed. A list of visit timestamps3, the title of the associated place and
the performed activity are provided to the user so that they are always aware
of the data that will be uploaded to the Crumblr server.

For each recognized place visit the system draws the shape of the region
corresponding to the visit on the map (dashed orange lines in the center of
the screen) and suggests a place for it. It is up to Alice to either approve or
correct this suggestion by either tapping to the next place visit (by pressing
“up” or “down” on the nav-pad) or selecting another place (by pressing “left”
or “right” on the nav-pad). The currently associated place is displayed in
green color, consisting of the balloon-like place marker and a dashed contour
line, similar to the place visit itself. The place contour helps users estimate
the geographical shape of places such as parks or larger areas, whereas simple
markers fail to do so effectively. For example, the shape of the park “Gruene
Wiese” is a lot larger than the shape of “Pommesbude bei Guido” (Figures
4.5(a) and 4.5(b)).

Moreover, the system adjusts the opacity of the place markers according
to the distance between the place region and the estimated visit region. The
closer the place region is to the visit region, the more opaque the icon appears.
This measure is supposed to accelerate the process of selecting the right place
by letting the user focus on the most probable places. Consider again the
example in Figure 4.5 – even though the place marker for “Pommesbude bei
Guido” is closer to the recognized place visit region (orange lines), the visit
region is completely contained in the region of “Gruene Wiese”. This makes
the latter the best candidate place for the visit in question. There is a third
place in the screenshot, “Contact” – its opacity is very low because Crumblr
considers it not being very probable for the currently selected visit. Alice has
indeed visited “Gruene Wiese” and does not need to change the suggested
place.

By pressing “up”, the dialog takes Alice to the next recognized place visit
(Figure 4.6(a)). This time, “Contact” is considered the best place candidate
and is therefore selected. Crumblr was wrong in this case, however, and
Alice cycles through the other surrounding places. There is also an option
to create a new place by tapping the corresponding button on the screen,
being exactly what Alice wants to do in this case. In Figure 4.6(b), Alice
provides the title and a short description of the new place “Oasis”, which is
automatically associated with the currently selected place visit (cf. Figure
4.7(a)).

Besides the visited place, the system tries to recognize the activity Alice
has performed for each recognized visit. Alice has, again, two choices – ei-

3Crumblr recognizes and stores multiple visits to the same place.

56



4.2. Use Cases

(a) If Crumblr’s database is missing a
place...

(b) ...the user can easily create a new one.

Figure 4.6: Creating a new place

ther the system’s guess is right or Alice has to select the correct activity by
tapping the “Activity” button. The latter action spawns a new list dialog to
select an activity from the predefined taxonomy (cf. Figure 4.7(b) and Table
4.1). The activity selection dialog has been carefully designed to make this
process as effortless as possible – reducing the maximum number of actions
to go through all available activities was the primary goal here. For example,
with only two clicks Alice is able to select “Water & Beach” from the activity
taxonomy (cf. Figure 4.7(b)).

Alice is satisfied with the place visits and activities recognized by Crum-
blr. Furthermore, Alice has discovered several nice places during the last
few days. Being confident about Crumblr’s visit recognition capabilities, she
is glad that the process of sharing her personal preferences and interesting
places with the community is only a matter of few clicks. After reviewing
her visits, Alice taps on the “Done!” button in the upper right corner and
the provided data is sent to the Crumblr server. In the meanwhile, the back-
ground process on the mobile device continues to observe Alice’s movement.
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(a) After creating a new place... (b) ...the user selects the performed ac-
tivity.

Figure 4.7: Selecting the activity for the new place

After a few weeks (depending on how active Alice is) Crumblr will have
collected enough data and the described process will be initiated again.

4.2.2 Route Recording

To capture routes (or visits to routes), Crumblr requires the user to explicitly
start and stop a “Route Recording” mode. After stopping the Route Record-
ing mode, Crumblr presents the recorded route on a map screen. Alice only
needs to provide the activity (as described in Figure 4.7(b)) and everything
can be uploaded to the server. Since the routes are automatically aggregated
on the Crumblr server, no further user interaction is required.

4.2.3 Recommending Places

Since Crumblr is aware of Alice’s current location, Alice can get location-
based place recommendations for an activity she selects. Initially, when
opening the Place Recommendation dialog, Alice looks at the screen in Fig-
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(a) Place Recommendations dialog (b) Cycling through recommended places

Figure 4.8: Place recommendations

ure 4.8(a). Alice can press “up” to increase or “down” to decrease the radius
of interest around her current location. Crumblr will only consider places
that fall within this radius. It is displayed as a dashed orange-colored circle
around Alice’s current position.

After setting the radius of interest and selecting the desired activity
“Cafes” (a process already described), Alice presses the “Recommend
places” button. After a few seconds, seven place recommendations are
retrieved from the Crumblr server and displayed as depicted in Figure 4.8(b).
Places considered less interesting for Alice are displayed with a low opacity.
By using the navigation pad, Alice can cycle through the recommended
places. Each place is displayed as a balloon-like marker, with the place title
shown above the selected marker and a brief description in the lower part
of the screen. For example, Figure 4.8(b) shows Alice having selected the
place “BarRosso” – its opacity is medium, indicating a moderate relevance
to Alice. The opacity of a place depends on the currently active layer of
the recommendation model. To view and choose from all available layers
(i.e. recommendation criteria), Alice can press the “Menu” button on her
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(a) Explanation for BarRosso’s low popu-
larity

(b) Reasons for Eins A’s high “general sim-
ilarity” rating

Figure 4.9: Place explanations

device. This lets a small menu slide into the screen, showing the available
recommendation criteria (cf. the lower part of Figure 4.8(b)). Exactly one
layer can be active at any time – by changing it, the opacity of the places
changes as well, reflecting their estimated relevance corresponding to the
currently active component of the recommendation model. Crumblr fosters
the serendipity factor by setting a low opacity level for places that Alice has
already visited. This way, places unknown to Alice are visually emphasized.

As in all map-based dialogs in Google Android, Alice can zoom and pan
over the map by using gestures with her finger (i.e. by performing drag-and-
release moves). By pressing the “center” button, Alice can see an explanation
of the estimated relevance calculated by Crumblr. For example, by selecting
the layer “Absolute popularity” and requesting explanations for the the low
popularity rating of “BarRosso”, a dialog is displayed as shown in Figure
4.9(a). Apparently, “BarRosso” is significantly less frequented than “Eins
A”. Figure 4.9(b) shows the explanation for the place “Eins A” and the
“General user similarity” component of the place recommendation model.
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(a) Recommendation model menu (b) “Sightseeing” places around “Jogging”
routes

Figure 4.10: Route recommendations and recommendation layers

According to the displayed explanation window, the user Charlie behaves
rather similarly to Alice (indicated by the opacity of his name), and he also
visited this place more often than any other user (indicated by the font size).
The small font size for Jenny expresses her low visit frequency to “Eins A”
when compared to the other visitors, while the low opacity of the font relates
to Jenny’s low general similarity to Alice. By clicking on the question mark
symbol in the lower part of the dialog, the rationale behind the approach of
scaling the font size and opacity is displayed.

A comprehensive discussion of the place recommendation model and the
used explanation approaches is given in section 6.6.

4.2.4 Recommending Routes

The user interaction in the Route Recommendation dialog is similar to the
Place Recommendation dialog described in the previous section. However,
due to the differences in the recommendation models described in section
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(a) Selecting a similar user (b) Viewing Bobby’s favorite routes

Figure 4.11: Explaining “Preferred by similar users” ratings

4.1.3, other input parameters must be obtained from Alice in order to re-
trieve interesting routes from Crumblr.

Alice adjusts the radius of interest and presses the “Recommend Routes”
button to select the the desired route activity and the activity describing the
places Alice wants to have near the routes. After pressing “OK” and wait-
ing a few seconds for the server to process the request and return the route
segments, the recommendation results are displayed as shown in Figure 4.10.
Crumblr retrieves the part of the route network that lies in the region spec-
ified by the radius of interest. Similar to the Place Recommendation dialog,
there is exactly one layer selected describing one component of the recom-
mendation model. Figure 4.10(a) shows the pop-up menu for the available
components of the route recommendation model. Each segment’s opacity
level is adjusted to the calculated rating, corresponding to the currently ac-
tive layer. By switching the active layer to “Places around”, Alice can see
which route segments are close to “Sightseeing” places (Figure 4.10(b)). The
places are shown as blue markers in order to provide a better explanation
for the estimated relevance and the resulting opacity of each segment. By
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clicking on the place marker, its title is displayed.
Figure 4.11(a) shows the result of selecting the layer “Preferred by similar

users”: a list of the most similar users who were active in the given region is
displayed. The varying opacity expresses the calculated “Jogging” similarity
between Alice and the other users. By clicking on the question mark symbol
in the lower part, the rationale behind the approach of scaling the opacity
is displayed. Let us assume that Alice is interested in the favorite routes of
the most similar user in the region, Bobby. By clicking on his name, Bobby’s
preferred route segments are emphasized as shown in Figure 4.11(b). Alice
is able to cycle through the favorite routes of other users in a similar fashion.

A comprehensive discussion of the route recommendation model and the
explanation approaches is given in section 6.6.

The consistent use of opacities and separate layers for both places and
routes is supposed to increase the overall comprehensibility and usability of
the mobile client. By switching layers, the users can choose from different,
personalized views on the aggregated, shared content.

Summary

This chapter covered the core aspects of Crumblr from a conceptual point of
view. It finally provided a comprehensive demonstration of the implemented
prototype, showing how the presented concepts map to the user experience
on the mobile device. The next chapter discusses aspects related to the
technological foundations and system design.
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Technological Foundations and
System Design

After the main concepts of Crumblr have been introduced and the user in-
terface has been described in detail, this chapter turns to the aspects related
to system design and technological decisions. First, the utilized technologies
are described in detail, as the underlying frameworks set the scope Crum-
blr was designed within. Second, the top-level solution architecture and the
software architecture of Crumblr’s client and server are discussed. In a nut-
shell, this chapter outlines Crumblr’s technological foundations and building
blocks before turning to its core algorithms in the next chapter.

5.1 Technological Foundations

This section discusses the rationale behind the main technological choices
that have been made during the project. Google Android and the Grails
framework are the two core platforms that enabled a rapid development pro-
cess and made it possible to develop a fully functional Crumblr prototype
within time constraints inherent in a diploma thesis project.

Google Android

Section 2.5 briefly introduced some of the mobile platforms that are likely
to play a major role in the mobile computing world in the years to come.
Table 5.1 presents an evaluation matrix having two dimensions – the mo-
bile platforms that have been evaluated for the project’s purposes, and the
evaluation criteria that were derived from project characteristics and con-
straints such as development skills, needed platform services, programming
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Evaluation
criteria

iPhone Google
Android

LiMo Windows
Mobile

SDK available yes yes no yes

Openness of the
platform

limited yes yes limited

Java API no yes no yes

Devices available yes no yes yes

Large, healthy
community

yes yes no yes

Full-stack software yes yes no yes

Background
services supported

no yes yes with
MDIP3

Modularization &
interoperability

bad good ? bad

Cost free free free depends on
tools used

Platform maturity immature immature immature mature

Table 5.1: Evaluation of existing mobile platforms, partially based on
[Kumparak, 2008]

languages, available documentation, etc.

The support for background services (i.e. processes running in the back-
ground without a UI) was considered critical for Crumblr since the client
software needs to operate continuously without user interaction. This is the
main reason why the iPhone SDK was not the best choice for Crumblr, al-
though Apple’s platform is gaining a lot of momentum among developers
recently. Android is the only platform having no real devices available, yet –
the first Android-enabled devices will be launched by the end of 2008. Nev-
ertheless, developers can deploy and test their applications on an emulator,
coupled with a solid plug-in for the popular Eclipse development environ-
ment.

Compelling arguments for Android are its Java-based SDK, the full-stack
platform, the flexibility and richness of the programming interfaces, and the
fact that it is open and supported by leading companies in the mobile indus-
try. The Java-based SDK allows for leveraging existing knowledge, libraries,
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Figure 5.1: The Google Android platform [Google, 2007]

and tools centered around the Java programming language.

Figure 5.1 shows the major components of the Android platform. Android
is a software stack for mobile devices that includes a Linux-based operating
system, middleware, and key applications.

Every Android application runs in its own process, with its own instance
of the Dalvik virtual machine. Even though Android does not provide a Java
virtual machine (JVM), the Android SDK provides the tools and API’s nec-
essary to begin developing applications on the Android platform using the
Java programming language. The Dalvik VM runs compiled Java classed by
transforming them into the .dex format understood by the Dalvik VM. Going
up the stack, Android includes a set of C/C++ libraries used by various com-
ponents of the Android system. These capabilities are exposed to developers
through the Android application framework. Underlying all applications is
a set of services and systems, including a rich and extensible set of GUI
widgets. Finally, Android ships with a set of core applications including an
email client, SMS program, calendar, maps, browser, contacts, and others.
All applications are written using the Java programming language. Some of
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Android’s most innovative aspects result from its key design principles which
are described next [Google, 2007].

Reusability

Developers have full access to the same framework APIs used by the core
applications. The application architecture is designed to simplify the reuse
of components; any application can publish its capabilities and any other
application may then make use of these capabilities (subject to security con-
straints enforced by the framework). This same mechanism allows the user
to replace components.

Interoperability and Loose Coupling

The Android platform provides a powerful message-oriented middleware,
aiming at loose coupling and seamless interoperability between application
components. This architectural feature is based on Intents. An Intent is
a simple message object that represents an “intention” to do something.
For example, if an application wants to display a web page, it expresses its
“Intent” to view the URI by creating an Intent instance and handing it off
to the system. The system locates some other piece of code (in this case,
the Browser) that knows how to handle that Intent, and runs it. Intents
can also be used to broadcast interesting events (such as a notification)
system-wide.

Long-Running Background Tasks

Crumblr’s aforementioned need for long-running background tasks on the
mobile client is appropriately addressed by Android’s Services. A Service
is a process that runs in the background. Other components “bind” to a
Service and invoke methods on it via remote procedure calls. Notifications
are a convenient mechanism for alerting the user of something that needs
their attention – for example, after Crumblr’s clustering process has finished
recognizing place visits. A Notification is a small icon that appears in the
status bar. Users can interact with this icon to receive information.

The described evaluation of available platforms and the aforementioned
unique aspects of Google’s platform make Android the mobile environment
of choice for Crumblr’s mobile client.
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Groovy

Groovy is an object-oriented programming language for the Java Platform as
an alternative to the Java programming language. It is a dynamic language
with features similar to those of Python, Ruby, Perl, and Smalltalk. It can be
used as a scripting language for the Java Platform. Groovy uses a Java-like
curly bracket syntax which is dynamically compiled to Java Virtual Machine
bytecodes and which works seamlessly with other Java code and libraries.
Most Java code is valid Groovy syntax and can be used dynamically as a
scripting language.

Whereas the Java language has won over an entire generation of
programmers with its commitment to exactitude and extensive-
ness, Groovy heralds a new era of programming on the Java plat-
form, one defined by convenience, expedience, and agility. [Glover,
2004]

Code written in Groovy is easy to read and maintain, and reduces scaf-
folding code when developing web applications. A plug-in for the Eclipse
development environment exists as well. The Crumblr server has been en-
tirely written in the Groovy programming language.

Grails

Grails1 is an open-source, rapid web application development framework that
provides a full-stack programming model based on the Groovy scripting lan-
guage. Built on top of Spring, Hibernate, Sitemesh, and other “best of breed”
Java frameworks, Grails is intended to be a high-productivity framework by
following the “convention over configuration” paradigm, providing a stand-
alone development environment and hiding much of the configuration detail
from the developer.

Grails provides a powerful and consistent persistence framework, easy to
use view templates using JSP and GSP (Groovy Server Pages), dynamic
tag libraries to create custom web page components, and good Ajax sup-
port. The Grails framework takes away the need to add configuration in
XML files. Instead, Grails uses a set of rules (conventions) while inspect-
ing the code of Grails-based applications. For example, a class name which
ends with “Controller” (for example BookController) is considered a web
controller. The domain model in Grails is persisted to the database using
GORM (Grails Object Relational Mapping), which uses Hibernate behind

1http://grails.org
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the scenes. Because of the dynamic nature of Groovy and the conventions
of Grails, there is almost no configuration involved in creating persistent
domain classes. Among its most interesting features is Grails support for
automatic marshaling of Java objects to JSON2 or XML and vice versa, and
its excellent support for Web Services and HTTP request parsing. Excellent
literature for getting acquainted with Grails is the book Getting Started with
Grails from Jason Rudolph [Rudolph, 2007].

To conclude, opting for Grails as the web development framework for
the Groovy programming language was an obvious choice, considering the
benefits outlined above. Crumblr’s entire server infrastructure is based on
Grails.

5.2 Solution Architecture

Figure 5.2 depicts the top-level solution architecture of the system, including
the organization of utilized technologies and frameworks. The current pro-
totype is a client-server based application consisting of one server and many
instances of the mobile client. The prototype is entirely based on open source
software.

Internet

Crumblr server

HTTP

JSON/XML

MySQL

Crumblr clients

Open APIs

Figure 5.2: The solution architecture

While the mobile client has been built on Google Android, the server
is running as a web application based on the Grails framework. A MySQL
database is used for persisting user data and shared content, which is ex-
changed via JSON messages transmitted by HTTP. All interfaces offered by

2Java Script Object Notation
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the server utilize established standards, making Crumblr’s server infrastruc-
ture open and reusable by other applications and services.

Having outlined the “big picture”, the discussion now turns to Crumblr’s
client and server parts.

5.2.1 Client Architecture

Figure 5.3 presents the client’s high-level architecture. The client is struc-
tured in three parts – the Android Activities, Android Services, and a Re-
source Layer. Each part’s structure and main responsibilities are described
below.

Figure 5.3: Crumblr client architecture – Crumblr’s components are green-
colored.

The Resource Layer consists of several components that are used by both
the Services and Activities. The Location Provider component is part
of Android’s Application Framework. It is basically a wrapper for the
GPS module. The Database Manager is responsible for managing per-
sistent data such as user settings, the collected GPS data, and the

71



Chapter 5. Technological Foundations and System Design

recognized place visits. The database used by Android is SQLite3, rep-
resenting the main data synchronization point for the used Services
and Activities. The Network Connector module is used by those parts
of the client that require communication with the server. The Con-
nector module utilizes asynchronous HTTP communication, allowing
for non-blocking callback mechanisms when communicating with the
server.

The Services part contains two Android Services – the GPS Data Poller
and the Visit Recognition Service. The GPS Data Poller has been de-
signed to continuously collect GPS position data and store it directly
in the database via the Database Manager. The Visit Recognition Ser-
vice gets activated by the Android platform when the phone’s battery
is charging. This approach is feasible since the visit recognition can
be performed anytime. Upon activation, the Visit Recognition Service
uses the Database Manager to retrieve any stored and unprocessed GPS
data. This data is fed into Crumblr’s algorithm for detecting place vis-
its. The visit recognition algorithm is a background task which spawns
a system notification upon completion. By clicking on the notification
icon, the Cluster Identifier Activity is launched, which is described be-
low.

The Activities part contains several components responsible for user inter-
action. An Android Activity is usually a single screen in an application.
Crumblr’s Android Activities use the Database Manager to store and
load application and user data. The network communication is handled
by the Network Connector. The Cluster Identifier is the component
responsible for managing the process of semi-automatic recognition of
place visits. It presents a visual summary of the recognized place vis-
its and activities on a map-based view. As described in section 4.1.1,
the user is given control over the recognized places and activities, be-
fore uploading the data to the server via the Network Connector. The
Place Recommender and the Route Recommender are Android Activi-
ties responsible for fetching place and route recommendations from the
server and displaying them to the user. The visual appearances of both
Activities have been described in detail in section 4.2.

5.2.2 Server Architecture

The architecture of the Crumblr server is depicted in Figure 5.4. It is based
on a classic layered architectural style adapted to the Grails terminology,
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Figure 5.4: Crumblr server architecture

consisting of Grails Domain Object Managers, Grails Services, and Grails
Controllers.

The Domain Object Managers are responsible for managing the per-
sisted data model, including spatial and contextual data discussed in
previous chapters. The most important entities (users, routes, places)
are managed by their corresponding Managers. In a nutshell, the
managers offer basic persistence-related operations to the upper layers.

The Grails Services Layer consists of several components encapsulating
Crumblr’s core application logic and algorithms. The Cluster Identifi-
cation service is responsible for associating place visits to places. It is
also responsible for estimating performed activities and updating place
shapes. The Network Calculation service implements Crumblr’s route
aggregation algorithms for maintaining a library of route segments.
Both the Cluster Identification service and the Network Calculation
service make use of the Graph & Geometry Algorithm Provider, which
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encapsulates various basic algorithms needed by the former services in
an extensible way. The Place Recommendation service and the Route
Recommendation service are responsible for executing the recommen-
dation models described in section 6.6. As they both heavily rely on
algorithmic tasks, they utilize the Algorithm Provider service as well.

The Grails Controllers Layer contains the components responsible for
accepting incoming HTTP requests, authentication, input validation,
calling the requested services, and finally rendering the response to
the client. There are two main categories of interfaces offered by
the Controllers Layer: the Collect API (for uploading data about
visits to places or routes) and the Recommender API (for requesting
recommendations). Figure 5.4 shows a special Admin Interface and its
controller that have been implemented for internal testing purposes.
The Admin Interface has become a full-fledged tool for a flexible
management of test scenarios; it will be briefly described in section
5.2.5.

5.2.3 Component Interaction Flows

Having outlined the responsibilities of components on both the client and the
server side, an example of a component interaction flow is given in Figure
5.5. The figure illustrates the interaction flow describing Crumblr’s semi-
automatic visit recognition use case3. When charging the mobile device’s
battery, the Android operating system spawns an instance of the Visit Recog-
nition Service (VRS). Upon activation, VRS fetches all available GPS posi-
tion data from the Database Manager (step 1) and executes the algorithm
for extracting place visits from GPS traces (step 3). It finally stores the
data describing the recognized visits to the database and notifies the user
about the completion (steps 4 and 5). Eventually, the user will open the
notification and launch the Cluster Identifier Activity (CI) (step 6). The CI
Activity fetches the recognized visits from the Database Manager (steps 7
and 8) and retrieves the suggested places and activities from the server for
the recognized visits (steps 9 and 10). Specifically, when suggesting places
and activities, the Cluster Identification service (server) utilizes the Graph
& Geometry Algorithm Provider to calculate the most likely places and ac-
tivities for each visit (not shown in figure). After selecting and confirming
the places and activities (steps 11–13), CI uploads the content to the server.

3The example has been chosen due to its relative complexity – component interac-
tions for other use cases are easily derived from the static description of the components’
responsibilities and are therefore omitted.
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Figure 5.5: Crumblr’s semi-automatic visit recognition process

Finally, the Cluster Identification service (server) updates the place shapes
according to the uploaded visit data (not shown in figure).

5.2.4 Captchr

The Captchr project has been developed by Matthias Käppler in the course
of his diploma thesis at the University of Kaiserslautern [Käppler, 2008].
Captchr is a mobile micro-blogging platform that takes proven Web 2.0
paradigms from the desktop PC and adapts them to mobile devices. By
letting users explicitly attach additional contextual data to blog entries,
such as the performed activity and current mood, Captchr exploits this
contextual data to build long-term user profiles. At its core, Captchr
leverages these profiles to compute social neighborhoods and to promote
interaction between its users. A more detailed description of Captchr’s
notion of social neighborhoods is given in section 6.6.1.

Among Captchr’s core domain entities are the users, the places, and the
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Figure 5.6: Crumblr’s Admin Interface: creating a new place

performed activities. To benefit from this fact, Captchr and Crumblr share
functionality. On the server side, the Domain Object Managers have been
jointly developed in order to provide functionality needed by both systems.
Similarly, the Resource Layer on the client side comprises functionality used
by both client applications. On a higher level, a part of Crumblr’s place
recommendation model makes use of Captchr’s User Similarity Service (cf.
section 6.6.1). Several other ways of interaction between Captchr and Crum-
blr are thinkable – a selection of ideas about bringing the two systems closer
together is given in Chapter 7.

5.2.5 Admin Interface

The “Admin Interface” component (cf. Figure 5.4) offers a HTML/JavaScript-
based interface to several parts of Crumblr’s server functionality. Initially
developed for validating the implemented services and domain object
managers, the Admin Interface has grown to a powerful tool for flexible
test case management. Figure 5.6 shows a typical screenshot of the Admin
Interface. It consists of three main areas: the Google Maps view in the
upper part, the control buttons and input fields in the lower left part, and
the status messages in the lower right part. The Admin Interface enables the
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creation, modification, storing, and loading of complete data sets including
users, places, routes, and visits. Moreover, the implemented geometric
algorithms, graph reduction methods, and parts of the recommendation
model can be extensively tested as well. Screenshots showing more of Admin
Interface’s functionality can be found in Appendix C.

5.3 Design Aspects

This section discusses some of the key non-functional aspects that further
characterize a system’s design, i.e. considerations regarding security, perfor-
mance, and usability.

5.3.1 Security

Being open, web-based, and service-oriented, Crumblr has been designed with
security considerations in mind. Crumblr employs HTTP Basic Authentica-
tion and a Grails plug-in on the server side for enforcing authorization rules.
All users must authenticate themselves before accessing any protected func-
tionality on the server. Confidentiality and data integrity are provided by
HTTPS/SSL, which will be natively supported by the final version of Google
Android. However, it should be emphasized that security aspects were not
among the primary development concerns. Security threats including forgery
of information, denial of service attacks, or valid but disruptive data currently
present challenges to many typical Web 2.0 applications, including the pro-
totypical implementation of Crumblr.

5.3.2 Performance

Network effects (cf. section 2.1) usually consume massive system resources.
Essentially, successful platforms relying on user contributions are perma-
nently under friendly distributed denial of service attacks (DDoS). After
reaching a certain level of popularity, such platforms are faced with scalabil-
ity and availability challenges. Scalability is a desirable property of a system,
a network, or a process, which indicates its ability to either handle growing
amounts of work in a graceful manner, or to be readily enlarged. Availability
is the proportion of time a system is in a functioning condition [Bondi, 2000].
Common solutions to these challenges typically involve high hardware and
software costs. Scalability and availability were not among the primary de-
velopment concerns, as they do not represent urgent issues for the prototype.
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5.3.3 Usability

Chapter 2.2 identified several challenges an application designed for mobile
devices should address: small size, short interaction times, and limited power.
Crumblr’s user interface has been designed to account for these considera-
tions:

Limited space: On Crumblr’s map-based views, only the most important
items are shown at any time. When associating place visits with the
Cluster Identifier dialog, only the most likely places for each recog-
nized place visit are displayed. This reduces the perceived information
overload. The displayed place and route recommendations are visually
structured by using varying opacity levels and a layer-based organiza-
tion of recommendation models. On demand, more detailed explana-
tions are shown in new dialog windows.

Limited time: Considering short interaction time, Crumblr’s algorithms
have been designed to automatically estimate the visited places and
performed activities; this way, the required user actions when sharing
place visits are significantly reduced. As the aggregated data grows
over time, the correctness of estimated places and activities should
improve.

User input: To account for the size and time limitations, the complete basic
functionality in all Crumblr’s dialogs is accessible via the touch screen
and the navigation pad. Furthermore, the design of the activity taxon-
omy was driven with usability considerations in mind as well. Due to
the low taxonomy depth, the user is able to select any activity with at
most two input actions.

Battery impact: In order to minimize the impact of the long-running, re-
source consuming Visit Recognition Service on the mobile client’s bat-
tery, the VRS is configured to get activated by the Android platform
when the battery is being loaded.
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Algorithms and Models

Crumblr

User
Observation

Personalized
Recommendation

Data
Aggregation

Figure 6.1: Crumblr’s life cycle model

Having described the system’s design, this chapter provides a detailed
analysis of the employed algorithms for semi-automatic collection of user
data, aggregating spatial and contextual data, and recommending places and
routes. The discussion follows the life cycle model outlined in section 4.1.5
(cf. Figure 6.1). For each analyzed algorithm class, related work is presented
first before outlining the approach employed by Crumblr.

6.1 Extracting Place Visits From GPS Data

As already described in section 4.1.1, Crumblr aims at recognizing place visits
from sampled GPS data. Basically, place visits can be extracted from GPS
data by looking for drop-outs of the GPS signal or by recognizing regions
where many consecutive location measurements are clustered together.
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6.1.1 The comMotion Recurring GPS Dropout Algo-
rithm

Early work on extracting place visits from GPS data used loss of signal to
infer the location of indoor places. One of the first systems dealing with
detecting place visits is comMotion [Marmasse and Schm, 2000], utilizing a
device that constantly takes GPS readings. The fact that most buildings are
GPS-opaque was exploited advantageously, permitting a simple mechanism
for learning the locations of buildings. If the GPS signal is lost, this is in-
terpreted as a significant cue, namely that a building has been entered. The
system maintains a history of readings, and when the signal has been lost
within a given radius on three different occasions the application infers that
this location (building) is interesting. Once a location has been discovered
and accepted by the user, the user can attach a to-do list to it – a prototypical
example is associating a shopping list with a supermarket.

The requirement for the user to go to a place at least three times before it
can be recognized was found to be overly restrictive [Hightower et al., 2005].
Moreover, since the indicator for identifying a location is the loss of the GPS
signal, only indoor locations can be found. Some outdoor places, such as
parks or sidewalk cafes, may not cause GPS signal loss, and thus cannot be
discovered. Conversely, in so-called “urban canyons” between tall buildings
or in tunnels, GPS signals are often weak and unreliable, which could trigger
false positives. Furthermore, the use of a fixed radius for delimiting places
may be problematic: the size and shape of places like a cafe, one’s home or
place of work can vary widely [Zhou et al., 2004]. Finally, the algorithm does
not deal with capturing place shapes or identifying the places the user has
visited.

6.1.2 k-Means Clustering

Multiple GPS measurements in the same location do not necessarily yield
the same coordinates due to errors and variations in the measured phenom-
ena, i.e. GPS signal travel times. Thus, the places where the user spends
considerable time appear as clusters of locations in the GPS traces rather
than as single points. Identifying densely clustered regions from the trace is
basically a clustering problem.

There are two basic types of clustering algorithms [Kaufman and
Rousseeuw, 1990]: partitioning and hierarchical algorithms. Partitioning
algorithms partition a set D of n objects into a set of k clusters. k is
an input parameter for these algorithms, i.e some domain knowledge is
required which unfortunately is not available for many applications. The
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partitioning algorithm typically starts with an initial partition of D and
then uses an iterative control strategy to optimize an objective function
providing a quality measure for the clusters. Hierarchical algorithms create
an iterative hierarchical decomposition of D. The hierarchical decomposition
is represented by a dendrogram, a tree that iteratively splits D into smaller
subsets until each subset consists of only one object. In such a hierarchy,
each node of the tree represents a cluster of D. In contrast to partitioning
algorithms, hierarchical algorithms do not need k as an input. However, a
termination condition has to be defined indicating when the decomposition
process should be terminated [Kaufman and Rousseeuw, 1990].

k-means is a popular clustering method belonging to the class of parti-
tioning algorithms. It minimizes an error term which is the sum of squared
distances from each point to its cluster center. In formal notation, the error
term to be minimized is

E =
k∑
i=1

∑
x∈Ci

d(x,mi)
2 (6.1)

where k is the number of clusters, mi is the center of cluster Ci, and d(x,mi)
is the Euclidean distance between a point x and mi. The algorithm initially
assigns all points to a predefined number of clusters k randomly. Then it
iterates over each point, finds the cluster center nearest to that point, and
assigns the point to the cluster that the center belongs to. This iteration is
repeated until the error term 6.1 is below a given threshold.

Evaluation. Generally, k-means clustering has several drawbacks for de-
tecting place visits [Zhou et al., 2004]:

• It needs to know the number of clusters beforehand. This number could
be difficult to determine in general. It could, for example, be approxi-
mated by looking for a “knee” in the graph plotting the error term 6.1
against the number of clusters k.

• All points are included in the clusters, which makes the results sensi-
tive to noise. A single noisy location reading far from other points can
significantly pull a cluster center towards it, since the squared-distance
error term 6.1 heavily weights distant outliers.

• The k-means algorithm is non-deterministic: the final clustering de-
pends on the initial random assignment of points to clusters.
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• k-means favors circularly shaped places. However, points from a stu-
dent’s location history on a university campus might easily form an
irregular shape.

Ashbrook and Starner’s k-Means Variant

In [Ashbrook, 2002], Ashbrook and Starner logged position data only while
the user was traveling at speeds greater than one mile per hour. Since they
were mostly interested in locations where the users spent time, rather than
how they got there, the authors looked for time gaps in the data that indi-
cate that the user stopped moving. The same time gaps also occur when the
GPS receiver cannot find any GPS satellites, such as when the user enters
a building. Whenever a point is found that has more than a certain time
t between it and the previous point, it is concluded that the point marks a
place visit.

In order to decide what value to choose for t, Ashbrook and Starner plot-
ted the number of places found for many values of t on a graph (cf. Figure
6.2(a)) and looked for an obvious point at which to choose t. The authors
decided on ten minutes as an amount of stopping time t that users might rea-
sonably consider significant. Due to GPS errors multiple visits to the same

(a) Number of place visits found for vary-
ing values of t

(b) Number of locations found as cluster
radius changes

Figure 6.2: Varying time thresholds and radii [Ashbrook, 2002]

place will be separated by only a few meters. For this reason, Ashbrook and
Starner created clusters of place visit points using a variant of the k-means
clustering algorithm. The basic idea is to take one point p and a predefined
radius r. All the points within this radius of the point p are marked, and
the mean of these points is determined. The mean is then taken as the new
center point p′, and the process is repeated. This continues until p′ stops
changing. Once the mean no longer moves, all points within the radius r are
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Figure 6.3: Illustration of the location clustering algorithm [Ashbrook, 2002]

placed in a cluster and removed from consideration. The procedure repeats
until no points remain and the algorithm terminates with a collection of clus-
ters describing places. An illustration of this is shown in Figure 6.3. The
X denotes the center of the cluster. The white dots are the points within
the cluster, and the dotted line shows the location of the cluster from the
previous step. In the last step (lower right), the mean has stopped moving,
so all of the white points will be part of this location [Ashbrook, 2002].

As already mentioned, the radius r needs to be predefined. By making
the radius too small, the algorithm will end up with only one point per clus-
ter. On the other hand, if the radius is too large, unrelated places would
be grouped together, such as home and the grocery store. In order to find
a good value for the radius, the clustering algorithm was run several times
with varying radii. The results were plotted on a graph as depicted in Fig-
ure 6.2(b). The arrow denotes a knee in the graph, indicating the radius
value just before the number of clusters begins to converge to the number of
places [Ashbrook, 2002].

83



Chapter 6. Algorithms and Models

Evaluation. When finding places, Ashbrook and Starner’s initial approach
considered a point as a place visit if it had time t between it and the previ-
ous point. This basically means that places would be detected when the user
exited a building and the GPS receiver re-acquired the signal. The improved
algorithm published in [Ashbrook and Starner, 2003], however, registers a
place when the signal is lost, and so is not dependent upon signal acquisition
time.

While not having the problem of choosing the number of clusters, this
specific variant of k-means clustering still has significant drawbacks for the
purpose of capturing place shapes. First, stationary data about place shapes
is lost by logging position data only when the user is moving. Second, by only
looking for time gaps between two points larger than t, the algorithm cannot
recognize urban canyons between tall buildings, resulting in false positives
and reduced precision. Finally, the fixed radius r is a very hard constraint,
considering the different sizes and shapes of places.

6.1.3 Accumulative Clustering

Figure 6.4: An illustration of Kang
et al.’s accumulative clustering algo-
rithm [Kang et al., 2004]

The well-known clustering algo-
rithms such as k-means have prob-
lems when dealing with noisy GPS
data and arbitrary place shapes.
Kang et al. designed an algorithm
that extracts places by applying ac-
cumulative clustering on traces of lo-
cation data [Kang et al., 2004]. It
takes a stream of timestamped co-
ordinates derived from any location
system as input and performs clus-
tering and merging simultaneously.

Specifically, the algorithm com-
pares each incoming coordinate with
previous coordinates in the current
cluster – if the stream of coordinates
moves away from the current clus-
ter then a new one is formed. Fig-
ure 6.4 illustrates this process. The
algorithm takes as input a distance
threshold d. Suppose that a user Al-

ice moves from place A to place B. While at place A, her location coordinates
are close together, i.e. within the distance d of each other, and so belong to
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one cluster A. As Alice moves toward place B, her coordinates move away
from cluster A, and a few small intermediate clusters are generated, clusters
i1, i2, i3, i4, and i5. A short time after arriving at place B, cluster B is
formed. If a cluster’s time duration is longer than some threshold t, the
cluster is considered to be a significant place. Therefore, clusters A and B
are considered significant places while the smaller clusters are ignored [Kang
et al., 2004].

When a cluster is added to the set of significant places, the algorithm
checks the merging condition: if the cluster’s centroid is within d/3 of an
existing place, the cluster is merged with that place; otherwise it is added as
a new place. A merging threshold smaller than d is sufficient because the dis-
tance between the clusters’ centroids tend to be smaller than the maximum
distance between individual coordinates.

Evaluation. Unlike other clustering algorithms that require offline cluster-
ing of complete location traces, the accumulative clustering algorithm from
Kang et al. computes clusters incrementally as new location estimates are
generated. The algorithm has been evaluated with 700 hours of real trace
data: the algorithm extracted most place visits successfully [Kang et al.,
2004]. However, the high frequent data sampling (1 reading per second)
could potentially degrade the performance and consume a significant amount
of battery from resource-limited mobile devices. Moreover, signal loss events
indicating visits to indoor places cannot be detected.

6.1.4 Density-based Clustering

Density-based clustering uses the density of local neighborhoods of points [Es-
ter et al., 1996]. Density-based clustering uses a notion of connectivity of
that neighborhood, whose points eventually form a cluster. Each cluster has
a considerably higher density of points than areas outside of the cluster. An
example of density-based clustering is shown in Figure 6.5.

DJ-Clustering is a density-based algorithm proposed in [Zhou et al., 2004].
There are two parameters used to define density in DJ-Clustering: Eps, the
radius of a circle, and MinPts, the minimum number of points within that
circle. For each point, its neighborhood is calculated: the neighborhood con-
sists of points within distance Eps, under the condition that there are at
least MinPts of them (cf. Def. 6.1.1). If no such neighborhood is found, the
point is labeled as noise. If a neighborhood is found and no neighbor is in an
existing cluster, the points are added to a new cluster. If a neighbor is in an
existing cluster c, the neighborhood is joined with c (cf. Def. 6.1.2). Since
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Figure 6.5: A density-based approach forms a cluster where point density is
high [Ester et al., 1996]

DJ-Clustering serves as a basis for the algorithms discussed in the following
sections, a pseudo-code of DJ-Clustering is outlined in Algorithm 1.

Algorithm 1 DJ-Clustering from [Zhou et al., 2004]

1: while there is an unprocessed point p from sample S do
2: Compute the density-based neighborhood N(p) wrt Eps, MinPts
3: if N(p) is empty then
4: Label p as noise
5: else if N(p) is density-joinable to an existing cluster then
6: Merge N(p) and all the density-joinable clusters
7: else
8: Create a new cluster C based on N(p)
9: end if

10: end while
11: return All clusters Ci

Definition 6.1.1 (Density-based neighborhood) Let S be a set of loca-
tion points and p ∈ S. Let H(p) be the candidate neighborhood of p defined
as:

H(p) = {q ∈ S|dist(p, q) ≤ Eps}
H(p) is called the density-based neighborhood N of the point p, denoted by
N(p), if

|H(p)| ≥MinPts

where Eps is the radius of a circle around p which defines the density, and
MinPts is the minimum number of points required in that circle. An exam-
ple for a density-based neighborhood is depicted in Figure 6.6(a).

86



6.1. Extracting Place Visits From GPS Data

Definition 6.1.2 (Density-joinable) Let N(p) and N(q) be the density-
based neighborhoods of points p, q ∈ S, respectively. N(p) is density-joinable
to N(q), denoted as J(N(p), N(q)), if there is a point o such that both N(p)
and N(q) contain o. A density-joinable relation is illustrated in Figure 6.6(b).

(a) Density – N(p) (b) Density-joinable

Figure 6.6: Density-based join concept [Zhou et al., 2005b]

Eps and MinPts combined determine the density of the neighborhoods
and thus the size and shape of the clusters. To discover smaller clusters and
a larger number of clusters, one can decrease both parameters. To discover
personal places from GPS data, Eps may be set to approximate the uncer-
tainty in GPS readings, e.g. to 20 meters [Zhou et al., 2004]. Values for
MinPts range depend on the data sampling interval; higher values mean
that clusters must be more dense in order to be formed. In general, this
will have the effect of increasing the precision of the discovered places while
decreasing the recall.

Evaluation. In [Zhou et al., 2004], the advantages of density-based algo-
rithms over k-means clustering approaches are summarized as follows:

• DJ-Clustering allows clusters of arbitrary shape,

• robustly ignores outliers, noise, and unusual points,

• it is easier to choose reasonable parameter values that do not depend
on the user, and

• it provides deterministic results.

However, an evaluation in [Hightower et al., 2005] revealed a weakness
in DJ-Clustering due to its indifference to the time dimension. Its goal to
account for large regions results in a lack of sharp demarcation between place
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visits. Consider the following case: user Alice visits a sidewalk cafe C1 in the
morning; in the evening, she visits another cafe C2 that is right next to C1.
DJ-Clustering will detect two clusters and merge them, since they are close
to each other and thus density-joinable.

6.1.5 Density-based Temporal Clustering

In [Zhou et al., 2005b], two extensions of DJ-Clustering were proposed: join-
based temporal clustering (TDJ) and TDJ with relaxed temporal constraints
(R-TDJ). The algorithms treat time as the third dimension and take a thresh-
old for the time elapsed between two points as the third input, deltaT , along
with Eps and minPts.

TDJ’s only difference to DJ-Clustering is an additional condition for
neighborhoods: the points in the neighborhood set must lie within the
temporal window defined by deltaT . This way, two clusters describing visits
to two closely neighbored places are not merged to one big cluster (as in DJ-
Clustering). TDJ’s pseudo-code can be illustrated by adding the temporal
constraint deltaT on line 2 in Algorithm 1.

However, TDJ does not recognize repeated place visits with short dura-
tion of stay. For example, a person may drive through the same fast food
restaurant a couple of times during a day. However, because the person only
stays there for a short period of time, TDJ does not accumulate enough lo-
cation readings to meet the minPts constraint to form a cluster. To handle
this situation, a relaxed temporal constraint strategy called R-TDJ was de-
signed. This strategy considers points that satisfy the spatial constraint but
fall in a much larger temporal window rDeltaT . The window is supposed
to be large enough to capture a different visit to the same place. Using
the above example, suppose there is not enough points in the morning visit
to form a cluster. The R-TDJ strategy will relax the temporal constraint to
count the evening visit points against MinPts. That is, the points from both
the morning visit and the evening visit will be counted together against the
MinPts constraint, so that a morning cluster will be formed. The morning
cluster will not be merged with the evening cluster.

Greater rDeltaT values will lead to a more relaxed temporal constraint,
thus find a larger number of less repetitive visits. A typical value could be
set as 24 hours for daily repetitive events, or 168 hours for weekly ones.

To improve the performance of the described density-based algorithms
(DJ-Clustering, TDJ, R-TDJ), some temporal pre-processing is performed.
First, GPS receivers return not just latitude and longitude, but also a speed,
estimated by the distance traveled between consecutive readings. Zhou et
al. exploited this information to eliminate GPS readings with speeds greater
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than 0, in contrast to the already described approach by Ashbrook and
Starner. This removes many GPS readings collected while driving, which
are considered uninteresting. Second, a GPS reading was eliminated if it was
within a small distance of the previous reading. This reduces the amount
of data that needs to be processed by the algorithm, therefore speeding it
up. Another reason these almost-stationary GPS readings were eliminated
is that the authors had “an intuition that indoor places and outdoor places
should be represented by similar sets of points” [Zhou et al., 2005b].

Evaluation. While designing an appropriate algorithm for Crumblr, a
number of issues with TDJ and R-TDJ have been identified:

First, the aforementioned temporal pre-processing steps for TDJ remove
all points with speeds greater than 0. This makes it impossible to consider
the last valid point before entering a building and losing the GPS signal.

Second, the removal of a GPS reading that was within a small distance
of the previous reading is disadvantageous when trying to capture shapes of
places, especially if this (unspecified) distance threshold is too low. It is also
not clear whether the filtering of close points has an effect on fulfilling the
MinPts constraint.

(a) Case A (b) Case B

Figure 6.7: Two cases revealing weaknesses in TDJ and R-TDJ

Finally, consider the scenarios depicted in Figure 6.7. The yellow and
the green points are location readings, taken at two separate days. In Figure
6.7(a), Alice has visited a cafe C1 on Monday; on Tuesday, Alice has visited
cafe C2 which is spatially very close to C1. In Figure 6.7(b), Alice has visited
the same cafe, once on Saturday and once on Sunday. Table 6.1 outlines the
issues with TDJ and R-TDJ when applied to the depicted scenarios.

While Case B in Table 6.1 could be fixed by simply merging the two
clusters, Case A would remain an issue.
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Case A Case B

TDJ Correctly recognizes two visits
to two places.

Does not recognize two visits
to the same place. Due to
the hard temporal constraint
deltaT , the two clusters are
not merged.

R-TDJ Due to the relaxed tempo-
ral constraint rDeltaT and
because both clusters are
density-joinable, the points
from the second visit count to
the first visit, and vice versa.
Two large clusters are formed
– points from different places
are not separated.

Even though the relaxed tem-
poral strategy correctly recog-
nizes visits to the same place,
the clusters are not merged.
This would leave the user with
two clusters logically belong-
ing to the same place.

Table 6.1: Issues with TDJ and R-TDJ

Moreover, R-TDJ’s relaxed temporal strategy was designed to detect per-
sonal paths from GPS traces, consisting of place visits. However, the place
visits in R-TDJ do not have to be “significant” in Crumblr’s sense: even
passing a place P that has been clustered beforehand would yield a new visit
to this place, due to the relaxed temporal constraint. This is not desirable
for Crumblr’s purposes, as its aim is to capture longer, significant visits to
places.

6.1.6 Crumblr’s Approach

Based on the evaluation of related algorithms, Crumblr’s approach builds on
the TDJ algorithm, modifying and extending it in several ways. Specifically,
Crumblr skips TDJ’s pre-processing steps and treats GPS signal losses sep-
arately. Furthermore, it does merge clusters, similarly to the accumulative
clustering approach from Kang et al. described in 6.1.3.

Definition 6.1.3 (Temporal predecessors) Let p and q be two points
from a set of GPS readings S, with timestamp(p) < timestamp(q). p is the
temporal predecessor of q if

@r ∈ S : timestamp(p) < timestamp(r) < timestamp(q)
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Algorithm 2 Crumblr’s Place Visit Recognition Algorithm

Require: ∀pi, pj ∈ S : i < j ⇒ timestamp(pi) < timestamp(pj)
1: for all points p1, p2 ∈ S, where p1 temporal predecessor of p2 do
2: if time difference(p1, p2) ≥ deltaT∧

distance(p1, p2) < k ∗ speedp1 ∗ time difference(p1, p2) then
3: Mark p1 as a visit to an indoor place
4: end if
5: end for

6: Execute TDJ with two modifications:
– skip temporal pre-processing
– do merge clusters by applying Kang et al.’s merging condition

7: for all recognized clusters Ci do
8: for all two consecutive points p1, p2 from Ci do
9: if time difference(p1, p2) ≥ newV isitT then

10: Store timestamp(p1) as a time of visit for cluster Ci
11: end if
12: end for
13: end for

14: return Clusters Ci with a list of visit timestamps for each cluster

Definition 6.1.4 (Visits to indoor places) Let p1 and p2 be two tempo-
ral neighbors from a set of GPS readings S. p1 describes a visit to an indoor
place if the following conditions are true:

time difference(p1, p2) ≥ deltaT (6.2)

i.e. the signal must have been lost for at least deltaT minutes, and

distance(p1, p2) < k ∗ speedp1 ∗ time difference(p1, p2) (6.3)

i.e. the user must not have traveled further than the estimated maximum
distance based on the speed at p1 and the elapsed time time difference(p1, p2),
multiplied with a constant k ∈ (0, 1).

Crumblr sets the sampling interval Tsampling to a high value, i.e. 1 minute,
to reduce battery drain. The constant k in equation 6.3 can be set to any
real value between 0 and 1. The Crumblr prototype uses k = 0.3. Figure 6.8
illustrates the intuition behind the heuristic for detecting indoor visits, out-
lined in Definition 6.1.4. The green points represent GPS readings pi, with p1
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being the last reading obtained before entering a building. If speedp1 is not
explicitly available from the GPS module, it can be estimated by considering
the reading before p1. Let p0 be the point that was acquired before p1, i.e. its
temporal predecessor. The speed at the point p1 can be estimated with the
quotient distance(p0, p1)/time difference(p0, p1). According to the example,

p
1 p

2
d = 100 m
t = 30 min

Signal re-acqusition time

p
0

d = 33 m
t = 1 min

Figure 6.8: The intuition behind Definition 6.1.4

the user’s estimated speed at point p1 is 2 kilometers per hour. Since the
reading p2 was acquired 30 minutes after p1 and distance(p1, p2) = 100m,
then the conditions in Definition 6.1.4 are fulfilled: distance(p1, p2) = 100m
is less than 0.3 ∗ 2kmh ∗ 0.5h = 300m. Basically, the latter value expresses
how far the user could have gone assuming constant speed, multiplied by
a factor k to account for a possible non-linear movement pattern before re-
acquiring the signal (depicted by the curved line pointing from the building
to p2).

Algorithm 2 outlines the approach to detect place visits employed by
Crumblr. In a first step (lines 1 – 5), the GPS trace is analyzed for loss of
signal events. While the comMotion approach interpreted three signal loss
events as a place visit, Crumblr proposes spatial and temporal constraints to
eliminate urban canyons such as tall buildings or tunnels. The constraints
are outlined in Definition 6.1.4. The equation 6.3 should make the approach
independent of the time needed to re-acquire the GPS signal.

After detecting visits to indoor places, in a second step the GPS trace is
analyzed for visits to outdoor places in form of clusters (line 6). For this pur-
pose the TDJ algorithm is modified so that it does merge clusters that belong
to the same place. The proposed merging condition is defined as follows: if
the cluster’s center is within mergeT of an existing cluster’s center, the two
clusters are merged; otherwise it is added as a new place. The introduction
of a merging threshold mergeT is accounting for the issues outlined in Table
6.1 – by controlling the merge process, the algorithm is able to differ between
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Case A and Case B. Crumblr sets mergeT = Eps.
Finally, in a third step, the clusters are analyzed for the number of differ-

ent visits. The basic idea is to compare every pair of temporal neighbors in
a cluster Ci and look for “jumps in time”, indicating a new visit to this place
(lines 7 – 13). The time difference between two consecutive points needs to
be greater than the threshold newV isitT , which is set to 60 minutes. The
simple assumption here is that if the user returns to a place after more than
60 minutes, Crumblr will interpret this as a new visit. This is important
since the frequency of visits provides significant cues about a user’s place
preferences (as already discussed in section 4.1.1). An example of this pro-
cedure is illustrated in Table 6.2. The identified time jumps are presented as
bold characters.

Timestamp Latitude Longitude

13:34:23 - 18 May 2008 7.4885340 34.89877456
13:35:23 - 18 May 2008 7.4885144 34.82654433
13:36:23 - 18 May 2008 7.4880054 34.89812466

... ... ...
19:12:15 - 18 May 2008 7.4880998 34.89833226

19:13:15 - 18 May 2008 7.4885364 34.89877666
10:30:23 - 20 May 2008 7.4885144 34.89841067

... ... ...

Table 6.2: An example of a set of points comprising a cluster. The cluster
contains several time jumps since it is a result of multiple merge operations.

Results. To accurately evaluate Crumblr’s proposed algorithm, a substan-
tial amount of GPS trace data needs to be collected as well as ground-truth
about the places people actually visited. The data collection task requires
substantial effort as well as technical expertise to diagnose and fix any prob-
lems. Furthermore, the data is inherently sensitive, making it challenging to
recruit volunteers. Therefore, due to resource limitations, some artificial test
cases were constructed instead.

Typical scenarios were constructed with the Admin Interface (cf. section
5.2.5) and the data was fed into Crumblr’s visit recognition algorithm. The
complete description of the test scenarios and the obtained results are given
in Appendix A. In summary, the first results are very promising: Crum-
blr filters out urban canyons, recognizes visits to indoor and outdoor places,
detects multiple visits to the same place and demarcates closely neighbored
places. However, a scenario not too far from reality was constructed that is
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not interpreted correctly by Crumblr’s visit recognition algorithm (cf. Figure
A.3 in Appendix A). Nevertheless, the results still need to be quantified and
generalized in a comprehensive user-based study, which can only be subject
of future work (see also the final remarks in Chapter 8).

Computational Complexity. The computational complexity of Crum-
blr’s visit detection algorithm can be analyzed in three steps, according to
the outlined parts of the algorithm. Initially, as depicted in Algorithm 2,
the set of GPS readings must be ordered by timestamps. Usually, this is
already the case since the GPS readings are stored in the database in the or-
der they were obtained. Therefore, each two consecutive points are temporal
predecessors. Thus, detecting indoor visits can be done in O(n).

Next, the R-TDJ algorithm is executed to compute the neighborhood of
a point. This can be done in O(n2). Another major cost is the join computa-
tion for each point’s neighborhood with existing clusters. This can be done
in O(n2) as well.

Finally, extracting the visit timestamps for each cluster is done in O(n)
since the points are already ordered by timestamps.

Overall, the complexity of the algorithm is O(n2). It can be further
optimized by using a database that utilizes a spatial index, for example
R-Trees [Guttman, 1984]. Performance tuning is out of the scope of this
thesis, however. Moreover, since the algorithms are supposed to run on the
Google Android platform, some remarks regarding performance tuning must
be made. The Google Android platform provides a powerful notification
architecture, enabling applications to react to system events such as “load-
ing battery”. The process running the visit recognition algorithm could be
triggered by such an event. In this case, the overall complexity of O(n2) is
acceptable for Crumblr’s proof-of-concept purposes.

6.2 Place Shapes

When designing a location-aware system dealing with places, a fundamental
question is:

How do people’s understandings of place relate to the represen-
tations of physical locations used by computational systems?

In [Zhou et al., 2005a], an empirical study was carried out to answer this
question. The authors equipped 28 participants with GPS-enabled devices,
which logged their position data for three weeks. Subsequently, the authors
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(a) Circle (b) Rectangle (c) Convex hull

Figure 6.9: Approximating a set of points by geometric shapes

conducted semi-structured interviews, asking the subjects to map each vis-
ited place to one of the four shape categories – Dot, Multi-Dots, Region, Path.
It was found that many places come in more complex shapes than points.
In particular, the shapes Region and Path were common across subjects.
Twenty-one percent of all places observed in the study were of these more
complex shapes. In order to account for this result, Crumblr’s place model
employs a generic approach – every place is described either as a single an-
chor point or a region. Crumblr deals with Paths (i.e. routes) in a separate
way, as already discussed.

When trying to represent places as regions instead of single points, sev-
eral options are imaginable. The following considerations played a role when
the Crumblr place model was designed. First, the input for the model is a
set of clustered GPS points. Each cluster contains multiple points describing
the place shape. The place model should therefore offer a suitable represen-
tation for such a set of points. Second, a trade-off must be chosen between
a high amount of information (expressiveness) and computational/storage
efficiency.

The idea to use simple geometric shapes such as circles and rectangles
was considered inappropriate because of the loss of information due to coarse
granularity. Precisely storing every point of each cluster would be too inef-
ficient. A data structure achieving a good balance between the described
criteria is the convex hull. This term is commonly used for the boundary of
the minimal convex set containing a given non-empty finite set of points in
the plane. Figure 6.9 illustrates and compares the described approaches to
represent a set of points.

Furthermore, consider two places which are very close to each other, e.g.
two downtown cafes. Figure 6.10 compares the capability of the three struc-
tures to demarcate the two places described by two sets of GPS readings
(blue and orange). Obviously, the convex hull is better suited to describe
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Figure 6.10: Place demarcation capability

complex place shapes and to differentiate between them in dense city areas.
Simple geometric shapes such as circles or rectangles are too coarse-grained
and too sensitive to outliers for this purpose. To improve the recognition of
places a user has visited, such precise information about place shapes is very
helpful. More details about Crumblr’s method to associate places to visits
will be given in section 6.3.

In computational geometry, numerous algorithms are proposed for com-
puting the convex hull of a finite set of points, with various computational
complexities. The list of algorithms includes “Jarvis march”, “Graham scan”,
“Divide and conquer”, and “Quick hull”. Since the place shapes have to be
managed and stored on the server, storage and computation efficiency is a
significant factor when choosing a convex hull algorithm. However, since
the algorithms are exchangeable, the ease of implementation was considered
slightly more important for the proof-of-concept prototype.

6.2.1 Calculating Convex Hulls

Graham scan, published in 1972 by Ronald Graham [Graham, 1972], is a
fairly sophisticated and very efficient algorithm having O(nlog(n)) complex-
ity. Being also fairly easy to implement, it has been chosen for Crumblr’s
purposes. A brief outline of the algorithm is given below.

Let C be a list of points in a Cartesian coordinate system. First, the point
with the lowest y-coordinate P is found. Next, C is sorted in ascending order
of the angle they and the point P form with the x-axis. P itself is moved to
the last position in C.

The algorithm proceeds by considering each point in the sorted list in
sequence. For each point, it is checked whether moving from the two previ-
ously considered points to this point is a “left turn” or a “right turn”. If it
is a right turn, this means that the previous point is not part of the convex
hull and should be removed from consideration. This process is continued
for as long as the set of the last three points is a right turn. As soon as
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Figure 6.11: Graham scan

a left turn is encountered, the algorithm moves on to the next point in the
sorted list. The process will eventually return to P , at which point the algo-
rithm is completed and the list now contains the points on the convex hull
in counterclockwise order.

Figure 6.11 illustrates the algorithm. The point P is the point with the
lowest y-coordinate. As shown in “1.”, A to B is a “left turn”, so the algo-
rithm proceeds to the next point in the array, C. In “2.”, the turn from B to
C is a left turn, as well. However, the next turn, from C to D is a right turn.
The algorithm detects this and discards the previously chosen segments until
the turn taken is left (B to D in this case).

6.2.2 Updating Place Shapes

As described in section 4.1.2, the place shapes are collaboratively created by
Crumblr’s users. Every uploaded place visit provides additional data about
the actual place shape. After Crumblr’s place visit detection algorithm has
clustered the GPS data, Graham scan is performed to calculate the convex
hull of each cluster. Next, for each convex hull, Crumblr estimates the place
A this visit probably belongs to (a process described in section 6.3). After
the user has confirmed the place, the place shape needs to be updated. The
following discussion describes the design of the proposed method for updating
place shapes based on convex hulls.

Simple methods

Let Sold be the set of points describing the old convex hull of the place A,
and V the set of points describing the convex hull of a cluster representing a
visit to A. The resulting new place shape Snew could be calculated as follows:

Snew = GrahamScan(Sold ∪ V ) (6.4)
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i.e. the union of Sold and V is taken as input for Graham scan, resulting in
a new convex hull. Figure 6.12 illustrates this process.

S
old

V

S
new

Figure 6.12: Old shape Sold and a new place visit V result in new place shape
Snew

Another possible variant could be a simple union of the old shape with
the convex hull of the cluster without performing Graham scan, i.e. Snew =
Sold ∪ V . The computation of Snew would be more complex, with basically
no improvement in precision. Both introduced variants have one decisive
drawback: the shape gets bigger and bigger over time, since every update
can only enlarge the shape. However, Crumblr’s stated goal is to design
a converging method that stabilizes the shape over time, achieving a good
balance between accuracy and efficiency.

Limiting the impact of single updates

As already mentioned in section 4.1.2, the effect of a single visit to the pre-
viously calculated shape is limited by employing a weighting method. The
basic idea of the proposed weighting method for shape updates is the follow-
ing: the more users already have contributed to the place shape, the less a
new place visit should impact the shape update.

PlaceShape

Visit

l
1

l
2

l
avg l

avg

PlaceShape'

Figure 6.13: An approach to limit the impact of single updates
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Consider a possible approach illustrated in Figure 6.13, where
PlaceShape describes the convex hull of a given place shape and V isit
represents the convex hull of a place visit. In a first step, the two convex
polygons are merged using Graham scan. Now consider the lines l1 and l2.
l1 is the line describing the old edge of PlaceShape, whereas l2 resulted from
performing Graham scan. To reduce the impact of V isit, the geometric
average of l1 and l2 is computed and assembled into the resulting line lavg.
The resulting polygon is reduced to PlaceShape′ as illustrated in the last
step.

The averaged polyline is determined as follows. Assume polyline l1 con-
tains more points than polyline l2 (if this is not the case, reverse them) and
let m be the number of points in l1. The closest point in polyline l2 to each
point in l1 is found. This produces m pairs of points, where points in l2 can
appear more than once, while points in l1 appear only once. The geometric
average of each of these pairs is computed and assembled into the resulting
polyline. This polyline represents the average of l1 and l2 and has as much
information as possible (since there are more points in l1). Furthermore,
when the geometric average of a pair of points is computed, the number of
previous shape updates can be used as weight for the points of l1. This way,
the impact of single updates tends to decline over time.

This method still has the same disadvantage as the simpler variants – it
only allows the place shape to grow. In the worst case, if the first visit to
place A led to the shape PlaceShape being positioned very far away from
the true shape, there is no way to ever correct the shape by transforming
or moving it to the “true” shape. Therefore, a more flexible mechanism is
needed to allow the shape to shrink in some directions as well.

ShapeUpdate – a flexible approach

Now consider the steps in Figure 6.14. The roles of PlaceShape and V isit are
now reversed. Again, in the first step, the two convex polygons are merged
using Graham scan. Next, the lines l1 and l2 are chosen as illustrated in
Figure 6.14. l2 now represents the new edge added to V isit after performing
Graham scan, while l1 is the old edge of V isit. After computing the geomet-
ric average lavg, the resulting polygon is reduced according to lavg to obtain
V isit′, as depicted in the last step.

PlaceShape′ from Figure 6.13 represents the growth of the place shape,
whereas V isit′ expresses how the place shape should shrink. In the final step,
PlaceShape′ and V isit′ are combined. Figure 6.15 illustrates the approach
taken here: by overlaying the two shapes we obtain an intersection region,
representing the final PlaceShapenew.
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Figure 6.14: Reversing the roles of PlaceShape and V isit

Visit'

PlaceShape'

+ PlaceShape
new

Figure 6.15: Combining PlaceShape′ and V isit′ to obtain the final shape
PlaceShapenew

Figure 6.16 summarizes this method, called ShapeUpdate, by plotting
the initial shapes, PlaceShape and V isit, with the outcome of the described
method, PlaceShapenew. Intuitively, the resulting shape represents a
weighted average of the two input shapes. The weights in the given example
are equal, i.e. PlaceShape has been obtained from a single previous
visit. Appendix B contains more complex examples, demonstrating the
effectiveness of ShapeUpdate.

Loss-of-Signal Visits

Crumblr’s place visit detection algorithm deals with loss-of-signal events sep-
arately, as already described. Due to the long sampling interval Tsampling = 1
min employed by Crumblr, loss of information occurs when trying to capture
visits to indoor places (i.e. buildings). Consider the following worst case: if
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PlaceShape

Visit

PlaceShape
new

Figure 6.16: Final result of the ShapeUpdate method

the user enters a building right before the next GPS sample is requested from
the GPS module, the previously obtained GPS coordinate p could be too far
away from the entered building to be used directly as an estimate for the
location of the building. Consequently, it should not directly be taken into
consideration when updating the place shape of the building, making it a
good candidate for the ShapeUpdate method as well. By applying ShapeUp-
date on single points describing loss-of-signal events which are spread around
the building, the resulting polygon should be ’drawn’ towards the building’s
real location.
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Figure 6.17: The expected impact of single updates over time

Results. As already mentioned, the process of updating the place shapes
should converge towards a stable state. Because of the nature of convex
hulls and the way updates are considered when calculating the new shape,
the impact of updates to a shape will decline over time and converge to zero
(Figure 6.17). Additionally, a stop threshold for the changes could be set,
which would prevent any further insignificant updates to the shape. This
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threshold, however, conflicts with the issue of timeliness, which is discussed
in section 7.2. The proposed ShapeUpdate method can be implemented effi-
ciently as its building blocks are based on efficient algorithms, while keeping
a high level of informative content about place shapes.

The ShapeUpdate method can have a rather adverse effect: it has a lasting
tendency to increase the number of points that define PlaceShape. However,
a simplification step could be performed after each update, which would elim-
inate points that are almost collinear to its two neighbored points.

6.3 Associating Visits to Places

For each recognized place visit, Crumblr estimates the place this visit prob-
ably belongs to. A high accuracy relieves the user from having to select
another place for a recognized visit. Crumblr employs a custom distance
function to determine the likeliness that a visit belongs to a certain place.

As already discussed, a place visit is either described as a single point
(loss of GPS signal) or a convex hull (clustered points). Let V isit be such
a set of points with cardinality |V isit| ≥ 1. Place shapes defining a re-
gion are an optional part of the place model, as already mentioned. There-
fore, a place can either be described by a single point or by a convex hull
as well. Let PlacePoints be the set of points describing a place P , with
|PlacePoints| ≥ 1. To determine the likeliness that a visit described by
V isit belongs to the place P described by PlacePoints, the distance be-
tween the two sets of points needs to be calculated. Intuitively, the likeliness
of a place should be inversely proportional to the calculated distance to the
visit region.

If at least one of the point sets consists of a single point, the distance
calculation is straightforward. A simple method is to calculate the shortest
distance between this single point and all points in the other set.

6.3.1 Shortest Distance

When talking about distances between two polygons A and B1, a common
method is to calculate the shortest distance between any point of A and any
point of B. This minimin function can be formally defined as

D(A,B) = min
a∈A

min
b∈B

d(a, b) (6.5)

1The following discussion also applies to the case when A or B consist of only two
points.
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where d(a, b) is any metric between two points. This definition of distance
between polygons is unsatisfactory for Crumblr, however. Consider the two
polygons in Figure 6.18(a), for example. The triangles are close to each other
considering their shortest distance, shown by their red vertices. However,
when talking about polygons representing place shapes and visit regions, a
small distance between two polygons should mean that no point of one poly-
gon is far from the other polygon. In this sense, the two polygons shown
in Figure 6.18(a) are not very close, as their furthest points are rather far
away from each other. In summary, the shortest distance is independent of
polygonal shapes. Another example is given in Figure 6.18(b), showing the

(a) Not considering the whole shape (b) Not considering the positions

Figure 6.18: Deficits of shortest distance between polygons

same two triangles, but in different positions. Obviously, the shortest dis-
tance concept carries low informative content, as the distance value increases
when the polygons are moved towards each other.

6.3.2 The Hausdorff Distance

In spite of its apparent complexity, the Hausdorff distance captures the previ-
ously described subtleties which are ignored by the shortest distance. Named
after Felix Hausdorff (1868–1942), Hausdorff distance is the maximum dis-
tance of a set to the nearest point in the other set [Rote, 1991]. More for-
mally, Hausdorff distance from set A to set B is a maximin function, defined
in equation 6.6.

h(A,B) = max
a∈A

min
b∈B

d(a, b) (6.6)

It should be noted that Hausdorff distance is asymmetric, which means
that in most cases h(A,B) is not equal to h(B,A). This general condi-
tion also holds for the example of Figure 6.19, as h(A,B) = d(a1, b1), while
h(B,A) = d(b2, a1). This asymmetry is a property of maximin functions,
while minimin functions are symmetric.

A more general definition of Hausdorff distance is denoted as

H(A,B) = max{h(A,B), h(B,A)} (6.7)
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a1

a2

b1

 b2

b3

h(A,B)

h(B,A)

a3

Figure 6.19: Hausdorff distance on point sets

which defines the Hausdorff distance between A and B, while equation 6.6
applies to Hausdorff distance from A to B (also called directed Hausdorff
distance).

6.3.3 Crumblr’s Approach

Initially, Crumblr utilized the Hausdorff distance to estimate the place likeli-
ness. However, the Hausdorff distance does not provide meaningful results if
the polygons intersect each other or if one is contained in the other. Special
considerations are necessary to detect and deal with these cases. To tackle
this problem, Crumblr proposes a custom approach to likeliness estimation.
The basic idea is to look for the place shape S which would change the least
after updating it with ShapeUpdate.

In general, the likeliness for a place P and visit V isit can be calculated
as follows:

LikelinessP,V =
Surface(PlaceShape)

Surface(ShapeUpdate* (Visit, PlaceShape))
(6.8)

where Surface is the surface area of a polygon, and ShapeUpdate* differs from
the described ShapeUpdate method by not applying the weighting method.
In other words, likeliness depends on how much V isit would modify the
place shape PlaceShape by applying the ShapeUpdate* method. Crumblr
exploits domain knowledge here: If V isit is completely contained in the poly-
gon PlacePoints, i.e. if ShapeUpdate* (V isit, P laceShape) = PlaceShape,
then the place P is considered an excellent candidate and the likeliness in
equation 6.8 gets the maximum value 1. The Hausdorff distance method for
estimating the likeliness, on the other side, would return a value less than
1, since the Hausdorff distance would be greater than 0, in this case. If the
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two polygons intersect each other or if PlacePoints is contained in V isit, the
proposed approach provides an elegant solution by considering the calculated
impact of a possible shape update.

PlaceShape

Visit

PlaceShape
new

(a) High likeliness

Visit

PlaceShape

PlaceShape
new

(b) Low likeliness

Figure 6.20: Examples for Crumblr’s approach to estimating place likeliness

Results. Figure 6.20(a) shows an example for high estimated likeliness.
The surface of the resulting convex polygon would be only slightly larger
than the surface of the place shape. Figure 6.20(b) depicts a case where
a visit region having no intersections with the place region results in a low
likeliness because a shape update would significantly enlarge PlaceShape.

The proposed approach offers the following advantages over distance-
based approaches. First, the proposed likeliness calculation accounts for
the intuitive long-term tendency that the impact of single visits to existing
shapes should be minimized. Second, the method is very efficient since calcu-
lating the surface area of a convex polygon and performing the ShapeUpdate*
algorithm can be implemented very efficiently.

6.4 Activity Estimation

As described in section 4.1.1, Crumblr estimates the performed activity and
suggests it to the user by examining aggregated history data. The aggre-
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gated history data comprises a set of place visits. A place visit is modeled
in Crumblr as follows:

PlaceVisit = (place, user, setOfActivities)

where setOfActivities is a set of all activities that were performed by the
user at that place combined with the count for each activity. For example, a
place visit history might look like outlined in Table 6.4:

Place User Activities

BarRosso Alice {(Cafes, 4)}
BarRosso Bob {(Mexican Food, 3), (Cafes,2)}
BarRosso Charlie {(Cafes, 7)}

Kung Fu Wok Bob {Chinese Food, 4)}
... ... ...

Table 6.3: An example of a place visit history

After executing its place visit detection algorithm and recognizing that
the user U has visited the place P , the following two approaches are imagin-
able for estimating the performed activity based on history data:

1. For all place visits to P , sum up the activity counts for each activity
and pick the one with the highest count.

2. For all place visits to P made by U , pick the activity with the highest
count.

For example, when estimating the activity for the place BarRosso and user
Bob, the first approach returns “Cafes” and the second “Mexican Food”.

Crumblr first tries to apply the second approach – if there were no previ-
ous visits from user U to the place P , Crumblr falls back to the first approach.
The basic idea here is that, in some cases, different people tend to perform
different activities at a place. By favoring the second approach, the activ-
ity is estimated in a personalized way. If the first approach also returns no
data, the user has to pick the activity from the complete activity taxonomy2,
however.

2This approach is favored over a list of ranked recommendations in order not to confuse
the user with an unfamiliar ordering of activities.
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6.5 Aggregating Routes

This section is organized in three parts. First, it outlines the work in [Morris
et al., 2004] that serves as a foundation for Crumblr’s route aggregation ap-
proach. Second, improvements to Morris et al.’s work are suggested. Third,
the contextual layer briefly outlined in section 4.1.2 is explained in detail.

6.5.1 Graph Reductions by Morris et al.

One of the most fundamental problems in forming a database of routes is
that due to errors inherent in the GPS system itself, two GPS tracks taken
from the same trail will not exactly be the same. A second problem arises
from the fact that routes overlap and intersect with other user-submitted
routes. Given a set of possibly overlapping and intersecting GPS tracks, the
general problem is to form a network of routes. The input to the problem is
a set of GPS tracks S (cf. Figure 6.21(a)), where each GPS track is a polyg-
onal line. The desired output is a planar graph G with vertices V and edges
E, where each vertex represents a route junction and each edge represents a
route segment as a polygonal line (cf. Figure 6.21(b)). The output graph G
has the following properties [Morris et al., 2004]:

• No duplicate representations of any physical route.

• Where duplicates exist, the resulting edge is the geometric average of
all duplicates present in the input.

• A vertex exists only where an actual route junction exists.

The first step is to build an initial graph representing all intersections
among the members of S. The intersections represent vertices of the graph,
splitting the tracks into separate polylines at all intersection points. Each
section of a split polyline corresponds to an edge in the graph.

The task of graph reduction is to find portions of the graph that are
close enough to be considered the same trail. Each operation performed re-
duces the graph in some way, bringing it closer to the desired solution. The
following are the reductions proposed in [Morris et al., 2004].

Parallel Reduction

A parallel reduction takes two parallel edges in the graph and reduces them
to a single edge. Edges are parallel in the graph if they connect the same
two vertices. Parallel edges are replaced by a single edge if the polylines as-
sociated with the two edges are sufficiently similar. Similarity is determined
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(a) Route of intersecting and overlapping GPS tracks

(b) Completely reduced graph

Figure 6.21: Example of the employed route aggregation method

by computing the Hausdorff distance, H(A,B), between the two polylines
A and B (see also section 6.3.2). If H(A,B) is below a threshold value,
rThresh, the reduction is performed. The averaged polyline to replace the
parallel edges is determined as already described in section 6.2.2.

If rThresh is chosen to be larger than the GPS error present in the data,
pairs of polylines collected by traversing a single physical trail will reduce to
a single trail. Since the GPS error is almost always insignificant compared
to the distance between unique trails, the value for rThresh can be chosen
appropriately. Typical values of rThresh range from 20 to 60 meters (de-
pending on the quality of the data) as physical trails are almost always (in
the Hausdorff distance) much further apart [Morris et al., 2004].
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(a) Two overlapping jogging routes in a park

(b) Parallely reduced graph

Figure 6.22: Example of the employed route aggregation method

Figure 6.22(b) gives an example of a parallel reduction and the resulting
averaged polyline.

Serial Reduction

A serial reduction eliminates a vertex of degree two (having only two outgo-
ing edges). Vertices of degree two can be created as a result of applying other
graph reductions. If a vertex in the graph has only two edges it cannot be a
trail intersection – therefore, it can be safely deleted. An example is shown
in Figure 6.22(b): after multiple parallel reductions several nodes of degree
two are created, depicted by blue rectangles. They can be safely removed
from the graph by merging the connected edges.

Face Reduction

Faces of a graph are regions bounded by some edges of the graph, as shown
in Figure 6.23(a). As GPS tracks intersect each other while traveling on the
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same trail, many small faces are formed due to GPS errors, as depicted in
Figure 6.21(a).

A face in the graph is reduced if all of its components are sufficiently
close. A measure of closeness is determined by first finding the two vertices
of the face that are the furthest away from each other. Let these vertices be a
and b. Two polylines are then formed with a and b as the common endpoints
by concatenating the polylines corresponding to the edges of the face. The
result is a pair of parallel edges. These two polylines are evaluated for simi-
larity using the same Hausdorff distance method as in parallel reductions (cf.
section 6.5.1). The same threshold value, rThresh, is also utilized. Figure
6.23(a) shows a face of degree four, with the vertices of the graph shown as
blue boxes. The points describing the polylines (each edge of the graph has
a corresponding polyline) are shown as green circles. Vertices a and b are the
pair of vertices that are furthest apart; they are used to form two polylines
to determine if the face should be reduced.

a

b

(a) A face of degree 4

a

b

(b) Reduced face

Figure 6.23: Example of face reduction

When a face is reduced, the average polyline R is computed in the same
manner as described in parallel reductions. Although a single polyline is
produced, all data from the face is being incorporated in it. All the edges
from the face (and their corresponding polylines) are deleted from the graph
and R is inserted connecting a and b. Let d be the degree of the face being
reduced, i.e. the face contains d vertices. Although a and b are connected
to R, the other d − 2 vertices are not. The remaining d − 2 vertices are
connected to R by determining the point on R that is closest to each of
the vertices individually. R is split appropriately at each point found to be
closest to one of the d − 2 vertices. New vertices are inserted at each split
point with two edges corresponding to split polyline segments from R and an
edge connecting the split point to the corresponding vertex in the d− 2 set.
The polylines connecting the new vertices to d − 2 vertices consist of only

110



6.5. Aggregating Routes

two points: those of the two vertices they are connecting. Any of the d − 2
vertices may have a split point in common and in this case the split vertex
has edges to any d − 2 vertices that share it. The result of this process is
illustrated in Figure 6.23(b).

Face reductions usually also produce vertices of degree two, as in Figure
6.23(b). This makes them a suitable input to the aforementioned serial re-
ductions. Note that a parallel reduction is simply a face reduction of degree
two. They have been detailed separately to ease description; they are also
treated differently when analyzing the overall graph for possible reductions.

Face detection. Morris et al. do not discuss methods for detecting faces.
A large number of uploaded GPS tracks tends to create many faces in the
resulting graph. Therefore, an efficient method for detecting faces is needed.
Furthermore, not every detected face will be reduced, i.e. not every face’s
components are sufficiently close.

Classic algorithms for detecting cycles (or more specifically: faces) use
depth-first search (DFS) to solve this problem [Cormen et al., 2001]. How-
ever, the output of such algorithms is usually a complete enumeration of
all faces in a given graph G = (V,E). Crumblr employs a custom iterative
breadth-first search (BFS) based approach for simultaneously detecting faces
and processing them. The approach can be expressed as follows. Let v be
any vertex in V . By performing BFS with the node v as starting point, a
cycle c is eventually detected, if G is cyclic. Due to the nature of BFS, c has
to be a face. The face detection triggers a separate method for checking if
the detected face should be reduced (i.e. if its components are sufficiently
close). If the check was positive, the face is reduced immediately and the
graph G is modified. Subsequently, control is returned to the face detection
algorithm, which restarts BFS at a vertex z 6= v. The algorithm terminates
after all faces have been either reduced or ignored.

6.5.2 Suggested Improvements

This thesis builds on the described graph reductions and suggests some im-
provements and extensions, which are outlined below.

Weighting Method for Sequential Operation

Although Morris et al. originally proposed the graph reductions as a one
time aggregation of GPS tracks, in [Morris et al., 2004] it has been noted
that the described operations can be run repeatedly with new data. How-
ever, Morris et al. did not explicitly deal with the problem of a single track’s
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(a) Edges fulfilling the relaxed constraints

(b) After applying parallel reduction

Figure 6.24: Parallel reduction with relaxed constraints

impact on the network. Crumblr suggests a weighting method to account
for the “maturity” of the established route network. For example, when a
polyline linenew describing a new GPS track needs to be averaged into the
network by performing a parallel reduction of linenew and a polyline from
the network linenetwork, then linenetwork should be weighted proportionally
to the number of tracks that contributed to it. The same weighting method
is employed by the ShapeUpdate method (cf. section 6.2.2) in order to reduce
the impact of single visits to place shapes – the method’s possible issues with
timeliness are discussed in Chapter 7.

Faces emerge “near” the intersections that result from integrating new
GPS tracks into the graph G. By focusing the aforementioned BFS-based
face detection process on vertices that represent the calculated intersections,
the face detection process performs significantly better.

Parallel Reduction with Relaxed Constraints

Parallel reductions in [Morris et al., 2004] are applied to edges that connect
the same vertices, i.e. having two vertices and sharing them both. However,
Crumblr proposes to relax this constraint and to apply parallel reduction
to edges both having one vertex and sharing the single vertex. Figure 6.24
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illustrates the proposed extension to parallel reduction.

Broken Junction Reduction

Consider the case depicted on the left hand side in Figure 6.25. Let the
distance between vertices a and b be below rThresh. The graph reductions
described so far are unable to further reduce this constellation of vertices
and edges. However, the edges to the left and right of the vertices a and b

a

b
c c

below rThresh

Figure 6.25: Broken junction reduction

could be reduced in a parallel manner since they are close enough. To reduce
this “broken junction”, the following reduction method is proposed: if two
vertices a and b are directly connected and their distance is below rThresh,
a new vertex c is created, inheriting all edges from a and b (middle part
of Figure 6.25). This enables the global graph reduction procedure to con-
tinue simplifying the graph structure by finally applying parallel reduction,
as illustrated on the right hand side in Figure 6.25.

Evaluation

Morris et al. have proposed an effective solution to the problem of forming a
database of routes. However, they provided a solution to the spatial part of
the problem only, while the semantic part, i.e. the integration of conflicting
thematic data, has remained unexplored. In [Matyas, 2007], an approach
has been presented that uses Semantic Web technologies – formal ontologies
– to describe spatial and semantic aggregation methods. More specifically,
the authors employ a rule-based language that allows to express spatial and
semantic preconditions for the application of aggregation methods. Such a
rule could be: “If there is a river between two uploaded GPS tracks, they
should not be reduced by applying Morris et al.’s parallel reduction”. If the
data is checked positively against all defined rules then the specified graph

113



Chapter 6. Algorithms and Models

reduction method is to be applied. Due to the lack of detailed information
about the landscape (such as rivers, lakes, or bridges), such approaches are
currently out of the scope of Crumblr and can only be part of future work.

6.5.3 Enriching the Network with Contextual Data

In order to enable personalized route recommendations, some additional data
is attached to each segment in the network. When a user uploads a track, he
also specifies the performed activity (e.g. “Jogging”). Crumblr attaches this
contextual data to the track, i.e. the user’s identity and the performed ac-
tivity, before aggregating it into the network. Each route segment is related
to the set of tracks that contributed to it, where each track is associated to
the performed activity and the user who uploaded the track.

When performing graph reductions, the newly created route segments in-
herit the contextual data from the segments they have been created from.
For example, when applying parallel reduction to segments p1 and p2, the
data about users and activities is transferred to the resulting segment pavg
before p1 and p2 are finally removed from the network.

6.6 Recommending Places and Routes

In order to provide an intelligent mechanism to filter out the excess of avail-
able information and to provide users with the prospect to find out items
that they will probably like according to their logged history of prior behav-
ior, recommendation systems have been extensively adopted by both research
and e-commerce applications. At the core of recommendation systems are
prediction algorithms which aim to calculate the probability that a user will
“like” an item. Recommendation algorithms are classified into content-based
and collaborative filtering based, while hybrid techniques have been proposed
as well. The coverage of related approaches that have also been applied to
recommendation systems, such as Bayesian networks, clustering, and Hort-
ing, is out of the scope of this thesis; [Schafer et al., 1999] provides a detailed
taxonomy and examples of recommendation systems. A brief overview of the
most common recommendation techniques is given below, before discussing
Crumblr’s approach in detail.

Content-Based Filtering

The basic idea of content-based filtering is to express the content of each
item in a form that can be objectively evaluated, and filter out items whose
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content does not match the user’s preferences. The most commonly used
method for expressing content is the feature vector method. According to
this method, each item is described in the form of a vector vdata consisting
of values for a set of features. For example, in the case of text data, features
are defined as the frequency with which several keywords appear in the text.
The preferences of each user are also expressed as a vector vuser using the
same set of features. If vdata is “similar” to vuser, the probability that the
user will like the item is considered high. Thus the item is recommended to
the user. Most content-based systems are intended only for recommending
text-based items, since appropriately expressing the content for other types
of data such as places is difficult to automatize.

User-Based Collaborative Filtering

Unlike traditional content-based filtering systems, such as those developed
using information retrieval or artificial intelligence technology, filtering deci-
sions in collaborative filtering are based on human and not machine analysis
of content. Collaborative filtering recommends items that were given high
ratings by a number of users with similar preferences as the user who re-
quested the recommendation [Goldberg et al., 1992]. Ratings capture pref-
erences of a user to a specific item or item category. They are collected by
either prompting the user by the system’s interface for an explicit rating (e.g.
a number from 1 to 10) or by implicitly deriving a rating from observed user
actions (e.g. online buying behavior).

The biggest advantage of collaborative filtering over content-based filter-
ing is that collaborative filtering requires no previous knowledge about the
content of the data, and thus can be applied to any type of data, regardless
of content. It does not depend on machine analysis of content and it has the
ability to implicitly filter based on complex and hard to represent concepts,
such as taste and quality.

Item-Based Collaborative Filtering

There is a variation of collaborative filtering called item-based collaborative
filtering [Sarwar et al., 2001]. In this approach, instead of calculating simi-
larities between users, similarities between items are calculated. Items which
show high similarity with the items that the user has given high ratings to are
recommended. The main idea here is to analyze the user-item representation
matrix to identify relations between different items and then to use these
relations to compute the prediction score for a given user-item pair. The
intuition behind this approach is that a user would be interested in items
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similar to the items the user liked earlier and would tend to avoid items sim-
ilar to the items the user did not like earlier. Amazon.com employs a variant
of item-based collaborative filtering, for example.

In [Sarwar et al., 2001], item-based collaborative filtering has been ex-
perimentally evaluated on a large movie database consisting of several thou-
sands of users and movie ratings. Experimental results showed that these
techniques tend to produce much faster recommendations, since they do not
require to identify the neighborhood of similar users when a recommenda-
tion is requested. The item-based scheme has been shown to provide better
quality of predictions than the classic user-user scheme; however, the im-
provement was found to be not significantly large.

Similarity

There is a number of different ways to compute the similarity between users
or items. Among the most common methods are cosine-based similarity and
statistics-based similarity (Pearson’s correlation coefficient, Jaccard’s sim-
ilarity coefficient). Mathematically, cosine vector similarity simcos of two
vectors x, y is defined as the dot product of these vectors divided by the
product of their magnitudes:

simcos(x, y) = cos(θ) =
x · y
‖x‖‖y‖

=

n∑
k

xkyk√√√√ n∑
k

x2
k

n∑
k

y2
k

(6.9)

A comprehensive discussion on similarity measures is out of the scope of this
thesis. Among other similarity measures, cosine similarity has some desir-
able properties which make it a well suited candidate for Crumblr’s purposes.
First, it is insensitive to the length of the vectors – it only considers the
structural similarity, i.e. the angle, between the vectors. Second, it produces
values in [0, 1] that can directly be interpreted as the degree of similarity,
with 0 being the lowest degree and 1 the highest one.

Explanations

It seems reasonable to provide explanation facilities for recommendation sys-
tems such as collaborative filtering systems. Previous work with another
type of decision aid – expert systems – has shown that explanations can
provide considerable benefit [Miller and Larson, 1992]. A detailed back-
ground about the benefits of explanations cannot be given here. Some of the
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benefits provided are justification, education, user involvement, and accep-
tance [Herlocker et al., 2000]. User acceptance is of special importance for
applications relying on user contributions, as it determines the adoption rate,
the effectiveness, and the success of such applications. It is my personal be-
lief that user-based recommendations are easier to explain than item-based
recommendations, because the former utilize a more trustworthy, human-
centered basis for explanations – other users. Moreover, going beyond pure
item recommendations, user-based recommendations also foster interactions
between users. Todays most successful platforms like Amazon.com and Digg3

effectively utilize such approaches. For platforms like Crumblr, user-based
recommendations and explanations are expected to significantly increase the
system’s acceptance.

Analysis

Filtering approach Performance Quality Explainability

Content-based ++ − ++
Item-based collaborative + + −
User-based collaborative − + +

Table 6.4: An analysis of recommendation approaches applied to spatial en-
tities such as places and routes

Table 6.4 outlines a qualitative comparison of the described approaches
applied to the domain of places and routes. Although content-based filtering
alone does not seem sufficient for such concepts like places and routes, it cer-
tainly makes sense to filter content according to some simple features such as
the geographic location. Since Crumblr is a proof-of-concept prototype, dif-
ferences in performance are considered less important than the explainability
of the approach. Therefore, advantage is given to user-based collaborative
filtering over item-based approaches. Several components of Crumblr’s rec-
ommendation model employ collaborative filtering to recommend places and
routes to users.

Crumblr’s Recommendation Process

As already stated in section 4.1.3, Crumblr’s recommendation process con-
sists of two steps:

3www.digg.com
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1. Content-based filtering of items (places or route segments) according to
the user’s current location and the activity to be performed. The suit-
ability of an item I for a given activity actP is determined by examining
the history of visits to this item; the item I is considered suitable for
actP if there has been a sufficient number n of visits to I with activity
actP . Currently, for simplification purposes, n is set to 1.

2. Rating the filtered items according to several components of the utilized
recommendation model.

The rest of this section deals with the second step, i.e. the components of
Crumblr’s recommendation model for places and routes, respectively.

6.6.1 Place Recommendations in Crumblr

This section provides a detailed coverage of the recommendation model for
places, conceptually introduced in section 4.1.3.

The following scenario provides an example that will be used through-
out the section. Consider the place visits given in Table 6.5 and imagine
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Alice 3 3 1 0 0 0 0
Bobby 0 2 13 10 2 1 1
Charlie 14 3 1 20 3 3 0
Jenny 2 0 10 2 3 16 2
Steve 12 6 2 0 2 1 15

Table 6.5: An example for place visits in Kaiserslautern. The cell values
express the number of visits for the given user and place, considering the
activity “Cafes” only.

the following scenario: Alice is new in town, has already visited a few cafes
(Venezia, Glockencafe, Extrablatt) and wants to try out some new places.
As already mentioned, Crumblr first filters the places according to the user’s
current location and the activity to be performed (“Cafes”). Second, the
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places are rated according to several components of the utilized place rec-
ommendation model (cf. section 4.1.3), which will be described in detail
next.

General Similarity

Crumblr utilizes a service offered by the Captchr system called UserSimi-
larityService. Captchr hereby defines user similarity as a function of two
user’s long-term profiles. In Captchr a long-term user profile is modeled as a
quadruple of the user’s activities, absolute spatial behavior, relative spatial
behavior, and temporal behavior. A more formal discussion of the concept
of user profiles can be found in [Käppler, 2008] and shall therefore not be
discussed here in detail. Instead, the components of the user profile are
informally explained below:

• User’s activities are represented as vectors in n-dimensional activity
space4 with elements representing the frequency of occurrence for the
given activity and user.

• Absolute spatial behavior refers to what places a user has been to, in-
cluding the total number of visits and the user’s explicit ratings for
each of these places.

• Relative spatial behavior yields information about the distances a user
moves, with respect to the user’s home place.

• Temporal behavior is derived by analyzing how often a user has been
active in a certain time slot of a day. Currently, four different time
slots are distinguished: morning, afternoon, evening, and night.

A formal similarity model for computing social neighborhoods has been
proposed in [Käppler, 2008] and implemented in the Captchr prototype. Each
component is modeled as a feature vector, making it suitable for traditional
approaches to measuring similarities such as the cosine similarity or the Jac-
card’s similarity coefficient. In a nutshell, the similarity between two users A
and B is calculated in Captchr by summing up the weighted partial similari-
ties over the components of these profiles. The total user similarity therefore
has a value in [0, 1].

Considering the example from Table 6.5 again, let PlaceVisitors =
{Bobby, Charlie, Jenny, Steve} denote the set of all users who visited the
places AllPlaces = {Venezia, Glockencafe, Extrablatt, Eins A, BarRosso, 21

4Currently there are 41 activities, transient activities not counted, thus n = 41.
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Lounge, St. Martin}. Let us further assume that Captchr has calculated
the similarities between Alice and the users from PlaceVisitors as given in
Table 6.6. Denote this vector of “general user similarities” as sim(Alice).

Bobby Charlie Jenny Steve

General similarity to Alice 0.89 0.68 0.25 0.27

Table 6.6: User similarities between Alice and PlaceVisitors, as calculated
by Captchr

Generally, Crumblr minimizes the rating for places that have previously
been visited by Alice, providing diversity and fostering serendipitous rec-
ommendations. Therefore, let us only consider the places that Alice has
not visited yet5, NotVisited. For each place from NotVisited, the “generally
similar users” component of the recommendation model tries to answer the
question:

Is this place mostly visited by users like me?

It does so by calculating the match between Alice’s profile and the weighted
“average” user for each place. Examine Table 6.7: for each place P , the
columns represent the place profile vector vP , whose components express
each user’s share of the total place visit count. For example, 83% of total

Eins A BarRosso 21 Lounge St. Martin

Bobby 31% 20% 5% 6%
Charlie 63% 30% 14% 0%
Jenny 6% 30% 76% 11%
Steve 0% 20% 5% 83%

Table 6.7: Users’ share of the total visit count for each place

registered visits to St. Martin were made by Steve, 11% by Jenny, and so
on. By multiplying each user’s visit share with the user’s general similarity
to Alice and summing up the products, Crumblr calculates the final rating
GenSimP (Alice) for a place P and user Alice:

GenSimP (Alice) = sim(Alice)T ∗ vP

For example, the general similarity rating for St. Martin is calculated as
follows:

[0.89, 0.68, 0.25, 0.27]T ∗ [0.06, 0, 0.11, 0.83] ≈ 0.31

5At least according to the knowledge available to Crumblr at that time.
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Finally, the general similarity ratings for all places in NotVisited are given
in Table 6.8.

Eins A BarRosso 21 Lounge St. Martin

GenSimP (Alice) 0.72 0.51 0.35 0.31

Table 6.8: Alice’s calculated general similarity ratings for places in NotVis-
ited

In summary, the general similarity rating of a place P tells Alice how she
matches with the estimated average visitor of P . A rating of 0.72 for the
cafe Eins A can be interpreted as very good. Ratings are not normalized
since Crumblr wants to reflect the true score it has calculated, expressing
how Alice’s general profile compares with the average visitor.

Activity Similarity

Alice might perceive the “general” similarity as too general – she might think
that “Cafes” preferences alone matter more to her than the overall observable
user behavior. Two persons that are generally similar in terms of Captchr’s
general similarity concept might have different tastes regarding “Cafes”. To
account for this, Crumblr provides the “activity similarity” component of its
recommendation model. This approach is based on user-based collaborative
filtering.

Like many traditional user-based collaborative filtering approaches,
Crumblr first calculates the similarity between two users by employing
cosine vector similarity. It does so by considering only visits to “Cafes”.
A user’s visit vector for “Cafes”, visitCafes, is a vector in a p-dimensional
space, where p is the number of AllPlaces and each component expresses
the visit frequency for the corresponding place. For example, based on
Table 6.5, Steve’s visit vector for “Cafes” is [12, 6, 2, 0, 2, 1, 15]. To calculate
the activity similarity simCafes(Alice, U) between Alice and any other user
U , their visit vectors for “Cafes” are used as input for cosine similarity (cf.
equation 6.9).

Table 6.9 summarizes the computed activity similarities between Alice
and the users in PlaceVisitors. The row of this table can be interpreted as
a vector simAlice

Cafes. Apparently, Charlie and Steve have tastes very similar to
Alice regarding “Cafes”. Crumblr therefore considers Charlie and Steve as a
good source of information when rating places in NotVisited. In this case, it
tries to answer the following question:
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Bobby Charlie Jenny Steve

“Cafes” similarity to Alice 0.33 0.82 0.36 0.95

Table 6.9: Activity similarities between Alice and PlaceVisitors, as calculated
by Crumblr

What are the other favorite “Cafes” of users that usually prefer
the same “Cafes” as I do?

Having calculated the activity similarities between Alice and the other
users, the next step in collaborative filtering is to pick out several users with
the highest similarity values (nearest neighbors). With similarity values of
0.82 and 0.95, Charlie and Steve should intuitively be included in the set of
nearest neighbors, NN. Bobby and Jenny, on the other hand, are considered
not sufficiently similar and are removed from consideration.

Finally, classic collaborative filtering tries to predict the rating that Alice
is going to provide for an item (place). The prediction is based on the nearest
neighbors’ ratings concerning the place and their similarity with the active
user. Since Crumblr does not collect explicit ratings6, the ratings must be
implicitly derived from the observed user behavior captured in Table 6.5.
Considering a user U , the more often U has visited a place P compared to
other places, the higher the rating for P should be. An intuitive approach is
to pick the U ’s most often visited place Pmax and normalize the other places’
visit count by Pmax’s visit count. This leads to a rating interval [0, 1], with
1 being the highest rating. Table 6.10 summarizes the derived ratings for
Charlie and Steve, rCharlie,Pi

and rSteve,Pi
respectively.

Eins A BarRosso 21 Lounge St. Martin

rCharlie,Pi
1 0.15 0.15 0

rSteve,Pi
0 0.13 0.07 1

Table 6.10: Users’ derived place ratings for places in NonVisited

Crumblr predicts the rating pAlice,Pi
Alice is going to give to a place Pi

by calculating the weighted sum of the nearest neighbors’ ratings and their

6considering the collection process obtrusive and the explicit ratings unreliable (see
also section 4.1.1)
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activity similarity to Alice:

pAlice,Pi
=

∑
H∈NN

(simAlice
Cafes(H) ∗ rH,Pi

)∑
H∈NN

simAlice
Cafes(H)

This calculus leads to the predicted ratings pAlice,Pi
summarized in Table

6.11.

Eins A BarRosso 21 Lounge St. Martin

pAlice,Pi
0.46 0.14 0.10 0.54

Table 6.11: Alice’s predicted ratings for places in NonVisited

Comparing these results with the ratings from the “general similarity”
model, the place Eins A has a rather high rating in both models. Therefore,
Alice’s intention to visit Eins A is likely to get enforced. The BarRosso cafe,
on the other hand, has received a low predicted rating (0.14) with respect to
“activity similarity”. Being aware of the way both models predict ratings7,
Alice could reconsider the relatively high value obtained from the “general
similarity” model attributed to BarRosso (0.51).

Absolute Popularity

Alice might be merely wondering which the generally most popular cafes in
the city are, because she is new in the area and simply likes crowds, for
example. Moreover, she might be looking for a rather less turbulent place
where she can talk to her old friend. For cases like this, Crumblr offers the
“absolute popularity” component of its recommendation model. The term
“absolute” refers to the neutrality to the user profiles attached to the place
visits.

Let count be the vector whose components express the total visit
counts for every place in NotVisited. The absolute place popularity
rating popularityP for a place P is directly proportional to its visit count,
normalized by the maximum visit count:

popularityP =
countP

max
k∈NotVisited

{countk}

The visit count is normalized by the maximum visit count, since Crumblr
makes no claim of having complete knowledge about the real-world visits.

7More on explanations will be given in section 6.6.3.
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Therefore, the normalized ratings enable Alice to quickly identify the places
that are usually more often visited than others among Crumblr’s users. Ac-
cording to the user-place matrix given in Table 6.5, the absolute place pop-
ularity ratings are summarized in Table 6.12.

Eins A BarRosso 21 Lounge St. Martin

popularityP 1 0.31 0.66 0.56

Table 6.12: Absolute popularity ratings for places in NonVisited

Among the four cafes in NonVisited, Eins A seems to be the most popular
cafe. BarRosso, on the other hand, is less visited by Crumblr’s users. Note
that “absolute place popularity” is not a personalized rating, as it does not
consider user profiles. In a nutshell, by considering only visits to NonVisited,
this method orders the places in NonVisited on a [0, 1] scale by comparing
them with the most popular place.

Overall Analysis

Considering the ratings obtained from the three discussed recommendation
models, Alice gets the overall impression that BarRosso is not a good can-
didate for her. Eins A and St. Martin, on the other hand, are two cafes she
considers worth visiting.

6.6.2 Route Recommendations in Crumblr

This section provides a detailed coverage of the recommendation model for
routes, conceptually introduced in section 4.1.3.

The following scenario will serve as an example for the discussion of the
recommendation approaches: Alice has just moved to a new neighborhood
and wants to have some new “Jogging” routes recommended.

Activity Similarity

Consider another user in Crumblr, Bobby. Bobby and Alice do not know
each other, but they usually took the same jogging routes in Alice’s old
neighborhood. Figure 6.26 illustrates the jogging route graph from Alice’s
old neighborhood. The dashed blue lines represent routes Bobby has taken,
whereas Alice’s routes are displayed as green lines. The red rectangles rep-
resent vertices in the graph, while the dashed lines represent the edges, i.e.
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Figure 6.26: Alice’s (green) and Bob’s (blue) jogging routes in Alice’s old
neighborhood

route segments. The route segments s3, s4, s5, and s8 are shared by both
users8.

Table 6.13 summarizes the visit counts for the given route graph. The
rows represent visit count vectors vkJogging for user k and activity “Jogging”.

s1 s2 s3 s4 s5 s6 s7 s8

Alice 7 0 8 8 7 0 7 7

Bobby 0 15 17 17 15 15 0 15

Table 6.13: Route visits for the given graph example

Crumblr tries to benefit from this intuitive similarity between Alice and
Bobby. It recommends meaningful route segments to Alice by using a variant
of collaborative filtering. In the first step, Crumblr calculates the similar-
ity between users. The basic idea is identical to the “activity similarity” for
places, introduced in section 6.6.1. Equally, the “activity similarity” between
two users is calculated as the cosine vector similarity (equation 6.9) between
their visit count vectors vka with respect to a given activity a. Continuing the

8Crumblr recognizes shared segments due to the route aggregation methods already
described in section 6.5.
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Figure 6.27: Route network and places in the vicinity of Alice’s new home

example, the “Jogging” similarity between Alice and Bobby is

simJ(Alice,Bob) =
vAliceJogging · v

Bobby
Jogging

‖vAliceJogging‖‖v
Bobby
Jogging‖

≈ 0.70

Figure 6.27 depicts the route network aggregated from uploaded tracks
in Alice’s new neighborhood, including some places around (blue markers)
as well. Bobby is also very active in Alice’s new neighborhood and jogs there
quite often. Alice is not aware of Bobby, but getting routes recommended
from him would very likely suit Alice well, as already stated. Since Crum-
blr has estimated a high similarity between Alice and Bobby with respect
to “Jogging” (0.70), Bobby’s favorite jogging routes are considered highly
interesting to Alice. Table 6.14 describes the visits to route segments in the
graph depicted in Figure 6.27, for the activity “Jogging”. Let us assume that

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

Bobby 12 0 12 8 4 7 1 6 4 2 8

Charlie 15 8 7 11 1 1 2 9 7 5 11

Steve 18 14 4 17 1 4 14 8 10 4 18

Table 6.14: User-segment matrix for the route network in Alice’s new vicinity,
for the activity “Jogging”

Charlie and Alice have no shared route segments at all – Charlie’s activity
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similarity to Alice is effectively 0.0. Steve has been added to the example as
someone who shares several routes with Alice. A graph of Steve’s and Alice’s
shared routes similar to the one depicted in Figure 6.26 is left out – Steve’s
resulting “Jogging” similarity to Alice has the value 0.23, however.

In the next step of classic collaborative filtering, several users with the
highest similarity values (nearest neighbors) are picked out. Charlie’s data
is removed from consideration to account for the zero similarity to Alice.
Crumblr picks Bobby and Steve as the nearest neighbors NN.

Finally, classic collaborative filtering tries to predict the rating that Alice
is going to provide for an item. Similar to places, Crumblr does not collect
explicit ratings for route segments. The ratings must therefore be implicitly
derived from the observed user behavior captured in Table 6.14. Considering
a user U , the more often U has visited a segment compared to other segments,
the higher its rating should be. The approach taken for places is reused for
route segments: pick the U ’s most often visited segment smax and normalize
the other segments’ visit count by smax’s visit count. This leads to a rating
interval [0, 1], with 1 being the highest rating. Table 6.15 summarizes the
derived ratings for Bobby and Steve, rBobby,si

and rSteve,si
respectively.

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

rBobby,si
1 0 1 0.67 0.33 0.58 0.08 0.50 0.33 0.17 0.75

rSteve,si
1 0.78 0.22 0.94 0.06 0.22 0.78 0.44 0.56 0.22 1

Table 6.15: Derived implicit ratings

Crumblr predicts the rating pAlice,si
Alice is going to give to a segment si

by calculating the weighted sum of the other users’ ratings and their similar-
ity to Alice:

pAlice,si
=

∑
H∈NN

(simJ(Alice, H) ∗ rH,si
)∑

H∈NN

simJ(Alice, H)

This calculation leads to the predicted ratings pAlice,si
summarized in Ta-

ble 6.16.

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

pAlice,si
1 0.19 0.81 0.74 0.26 0.49 0.26 0.49 0.39 0.18 0.81

Table 6.16: Predicted segment ratings for Alice
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For example, segment s3 received a much higher rating than s2. Ob-
viously, s3 is a segment regularly taken by Bobby, whereas s2 is Steve’s
preferred segment. Consequently, Alice’s high similarity with Bobby leads
to pAlice,s3 � pAlice,s2 . On the other hand, segment s7 is avoided by Bobby
and favored by Steve, implying a low predicted rating pAlice,s7 . In summary,
“activity similarity” effectively rates Bobby’s favorite segments higher than
Steve’s.

Distance to Relevant Places

In addition to the targeted “Jogging” activity, Alice would like to have some
“Sightseeing” spots along the routes. Crumblr therefore provides the “dis-
tance to relevant places” component, which takes into account how far the
relevant places are when rating route segments.

Let actP be the specified activity describing the desired places, e.g.
“Sightseeing”. Further, let Placesact be the set of places satisfying the
following conditions:

• The places are suitable for the activity actP , with the suitability already
defined in section 6.6.

• The places are within the region of interest as specified by Alice (cf.
section 4.2.3).

For each segment si and for each place P ∈ Placesact, Crumblr first calculates
the distance from si to P . Formally, the distance from a place P to a route
segment si is the shortest distance between P and si:

dist(si, P ) = min
a∈si

min
b∈P

d(a, b)

Further, let NearbyPlaces denote the set obtained by removing all places from
Placesact being too far away from all si. Formally, these are places having
dist(si, P ) > dThresh for all segments si, where dThresh = 100 meters.

Having calculated the distances to all places in NearbyPlaces, Crumblr
derives a final rating ratingdist(si) for segment si. Consider Figure 6.28(a),
where segment s1 has one “Sightseeing” place nearby, P1. Let the distance
from s1 to P1 be dist(si, P ) = 2 meters. Intuitively, one would expect the
rating to correlate negatively with dist(si, P ), for example:

ratingdist(si, P ) =
c

c+ dist(si, P )
(6.10)

where c is a constant which aims at reducing the effect of very small dis-
tances. For demonstrative purposes, Crumblr sets c = 20. According to
equation 6.10, the final rating for s1 would be ratingdist(s1) = 0.9.
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Figure 6.28: Examples of route segments and NearbyPlaces

However, this approach is appropriate only if |NearbyPlaces| = 1, i.e.
if there is only one place to consider. For example, Figure 6.28(b) illus-
trates the case where this approach might deliver unsatisfactory results. Let
dist(s2, P1) = 30m and dist(s2, P2) = 35m. Even though both places are
more than 2 meters away from s2, the fact that there are two relevant places
nearby instead of one should imply a rating that is higher than the one ob-
tained for the case in Figure 6.28(a). A simple average of the individual
distance ratings for P1 and P2 would lead to a lower rating, whereas the sum
of the individual distance ratings would still result in a too low rating:

rating′dist(s2) =

η∑
k=1

ratingdist(si, Pk) =
20

20 + 30
+

20

20 + 35
= 0.76

where η is the number of places in NearbyPlaces.
Intuitively, the rating should account for both the number of nearby places

NearbyPlaces and the distance to these places. To account for this, the fol-
lowing equation can be used:

rating′′dist(si) = ln(e+ η − 1) ∗ rating′dist(si) (6.11)

The term ln(e + η − 1) is a factor reflecting the significance of the size of
NearbyPlaces. In the example from Figure 6.28(b), the resulting rating would
be:

rating′′dist(s2) = ln(e+ 2− 1) ∗ 0.76 ≈ 1.3 ∗ 0.7 = 0.99

and the rating for s1 from Figure 6.28(a):

rating′′dist(s1) = ln(e+ 1− 1) ∗ 0.9 = 0.9

yielding the desirable result when comparing both ratings:

rating′′dist(s2) > rating′′dist(s1)
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However, since the results of both equation 6.10 and 6.11 can be greater
than 1, Crumblr simply cuts off this excess: a rating greater than 1 can be
simply interpreted as “good enough”, or “there is plenty of relevant places
nearby”. Therefore, the final equation for calculating the rating of a segment
si is:

rating*dist(si) = max{rating′′dist(si), 1} (6.12)

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

rating*dist(si) 0 1 0 0 0.8 0.1 0 0.5 0 0.7 0

Table 6.17: Distance ratings for the route network in Alice’s neighborhood

Table 6.17 summarizes the calculated distance ratings for the route net-
work in Alice’s neighborhood from Figure 6.27, with the blue markers rep-
resenting the set of places Placesact. Segments with a zero rating have no
“Sightseeing” places within distance dThresh. Segment s2 has the maximum
rating since it has two relevant places in its immediate vicinity. Due to the
aforementioned ln(e+ η − 1) factor, s2’s distance rating is greater than s5’s,
even though “Watch tower” is very close to s5.

A possible improvement to the calculated distance rating might be the
consideration of the calculated relevance ratings for the nearby places. The
place ratings might be used as multiplicative factors when aggregating mul-
tiple place distances in equation 6.12.

Dedication

A jogging route might be limited in its dedication to “Jogging”, because
there are other users who frequently use that route segment for other activ-
ities such as “Biking” and “Hiking”. Alice might want to avoid bikers and
hikers while jogging and therefore prefer other routes.

To account for this, Crumblr rates the route segments depicted in Figure
6.27 by calculating the percentage of “Jogging” visits for each segment:

rJogging(si) =
countJogging(si)

count(si)

where countJogging(si) is the number of visits to segment si for the targeted
activity “Jogging”, and count(si) is the total visit count for si.

The calculated “dedication” ratings might look like in Table 6.18. Com-
pared with the result of the previously introduced ratings (“activity simi-
larity” and “distance to places”), there are some significant differences in
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s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

rJogg.(si) 1 0.78 0.21 0.60 0.18 1 0.10 0.1 0.45 0.1 0.91

Table 6.18: Dedication ratings for the route network in Alice’s neighborhood

ratings. For example, s2 has a very high “dedication” rating (0.78) since
there are mostly joggers active on this segment. On the other hand, the
same segment is not preferred by her most similar user, Bobby (0.19). Seg-
ment s5, being very close to a sightseeing place (a watch tower), has a good
“distance” rating – however, it is also expected to be highly frequented by
people exercising mostly activities other than “Jogging”.

Absolute Popularity

Similar to the case outlined in section 6.6.1, Alice might be interested in
identifying generally popular route segments (segments visited more often
than others), without caring about user profiles.

Let count be the vector of total visit counts for every segment in the
given graph. The absolute popularity rating popi for a segment si is directly
proportional to its visit count, normalized by the maximum visit count:

popi =
counti

max
p∈E
{countp}

(6.13)

where E is the set of edges in the graph G = (V,E). The visit count is
normalized by the maximum visit count, since Crumblr makes no claim of
having complete knowledge about the real-world visits. Therefore, the nor-
malized ratings enable Alice to quickly spot popular route segments in her
vicinity.

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

popi 1 0.49 0.51 0.8 0.13 0.27 0.38 0.51 0.47 0.24 0.84

Table 6.19: Popularity ratings for the route network in Alice’s neighborhood

Table 6.19 summarizes the popularity ratings for the given graph, cal-
culated by applying equation 6.13. Route segment s5, for example, is less
frequented than segment s4.

Overall Analysis

The introduced four components of Crumblr’s recommendation model should
allow Alice to gain valuable insight about the jogging routes in her vicinity.
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She can choose the most appropriate criterion in the given situation, before
deciding what route(s) to take. In just a few clicks, Alice can access various
kinds of information about the nearby routes. Furthermore, Crumblr employs
visual and textual explanation techniques for the provided recommendation
models, as discussed in the following section.

6.6.3 Explanations

Data presentation and exploration on mobile devices are heavily affected by
the small size and resolution of displays. Several approaches have been ex-
plored to express items’ relevance on mobile devices, such as a vertical bar
attached to the symbol whose height represents how much that object satis-
fies the user’s query, and symbols with different opacity levels [Reichenbacher,
2004].

Crumblr provides several mechanisms for explaining the calculated rat-
ings on the mobile device. As already described in section 4.1.4, the opacity
of each item (route segment or place) is adjusted to the item’s rating from the
currently active component of the recommendation model. The components
of the model are mapped to visualization layers, which can be individually
selected from a menu. The approach of varying opacity is feasible since all
components of the recommendation model yield values in the interval [0, 1],
leading to an opacity calculation that is easily understandable by users:

opacity(item) = rating(item) ∗ opacitymax (6.14)

This way, the ratings in [0, 1] are presented to the user in an intuitive way:
items that are more opaque than others are eye-catching and appear more
relevant. A minimum threshold is set to assure that all filtered items remain
visible.

In addition to the opacity-based approach, specific on-demand visual and
textual explanations have been developed for each component of the recom-
mendation model, which are discussed next.

Explaining Place Recommendations

For each component, its most important aspects and the derived explana-
tion approach are outlined. The discussion assumes a user Alice requesting
explanations for a recommended place P .

General similarity: The most important aspects here are the set of users
with a high share of visits to P , and the users’ general similarity to Alice.
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Therefore, for a place P , the names of the users with the highest share of
visits to P are displayed as an explanation for the recommended place. To
account for the differences between shares of visits, the font size of the names
is scaled accordingly. To express the estimated general similarity to Alice,
the opacity of the user names is calculated similar to the formula given in
equation 6.14.

Activity similarity: The most important aspects are the top N users
most similar to Alice with respect to the given activity A and their favorite
places for the given activity A. For the place P , the names of the selected
users which have contributed to the place’s rating are shown. The size and
opacity of their names is adjusted to their derived implicit rating for P and
the calculated activity similarity to Alice. Alice is also given the option to
review the favorite places of the selected N users.

Absolute popularity: P ’s visit count, the visit count of the most visited
place Pmax for the given activity A, and Pmax’s name are displayed.

Explaining Route Recommendations

For each component of the route recommendation model, its most important
aspects and the derived explanation approach are outlined.

Activity similarity: The most important aspects are the topN users most
similar to Alice with respect to the given activity A and their favorite route
segments for the given activity A. Therefore, the names of the selected N
most similar users are displayed, whereby the font opacity is scaled according
to the activity similarity to Alice. Furthermore, Alice is given the option to
select a user U and review U ’s preferred route segments in the region.

This approach differs slightly from the explanation approach taken for
explaining “activity similarity” for places. It is not reasonable to let users
select individual route segments from a dense route network on the small
screen when requesting explanations; instead, the user is given the option to
view other users’ favorite segments on the map.

Distance to places: Since a segment’s distance to relevant places and the
number of nearby relevant places are the most important aspects here, the
relevant places are displayed as place markers as well.

133



Chapter 6. Algorithms and Models

Dedication: Each segment’s percentage of visits with the targeted activity
A can be explained with the segment’s varying opacity.

Absolute popularity: A segment’s visit count compared to the visit
count of the most visited segment is directly transformed to the opacity
level. Therefore, the varying opacity is considered sufficient in order to spot
popularity trends in the displayed network of route segments.

The employed explanation approaches are derived from the most impor-
tant aspects of the corresponding recommendation model. In particular, by
showing the names of the users that contributed the most to the calculated
ratings and further providing detailed explanations, the system’s trustwor-
thiness and serendipitous interactions between users are further promoted. A
visual demonstration of the employed explanation approaches can be found
in section 4.2.
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Discussion

Having described the employed algorithms in detail, this chapter provides
some critical remarks and discusses general ideas about possible future work.

7.1 Cold Start and Personal Use

In section 2.6, the two dimensions of motivations for sharing place informa-
tion have been discussed. Although Crumblr aims at covering all of the iden-
tified four categories of use, the “personal reminiscence” category remains
not fully explored. Currently, users are only able to review past visits and
activities before uploading them to the server; after that, this data cannot
be reviewed any more. By offering users a more complete personal memory
function, i.e. a way to recall to mind all past visited places and experi-
ences, the system’s usefulness in its ’blank state’ and the users’ motivation
to capture place visits via Crumblr should be significantly higher.

Another way of reducing the problem of the initial lack of observed be-
havior might be a varying automation of acquiring preferences. For example,
the user could be prompted to enter an initial profile of interests, which might
be further updated by the system.

7.2 Temporal Aspects

The developed recommendation models for places and routes do not consider
the time dimension when building user profiles and utilizing them for item
recommendations. For example, the absolute popularity rating of a place
(cf. section 6.6.1) does not account for the distribution of visits over the
week, month, or year: the visit frequency of sidewalk cafes can be signifi-
cantly different on work days compared to weekends. Moreover, a mecha-
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nism is needed for keeping the data up-to-date: place visits older than several
months or years should be considered less relevant than place visits within
the last few days. It is also imaginable that the geographic shapes of routes
and places change over time. By introducing a stop threshold for the Shape-
Update method described in section 6.2.2, the place shapes would eventually
stop updating and future changes to place shapes could not be considered.

Furthermore, Crumblr currently uses historic context only for updating
the user profile. By extrapolating future user context, the system can pro-
vide additional functionality to the user based on the anticipated user loca-
tion. For example, CityVoyager models users’ movements using a first-order
Markov model (i.e. a Markov model in which the probability of the next
state is dependent only upon the current state), using geographic areas as
states [Yuichiro and Masanori, 2006]. Transition probabilities are calculated
from periodically plotted user locations, and a higher probability indicates
more chances of a user advancing to the area. The places picked out by the
filtering algorithm are weighted according to the areas in which they are lo-
cated, with large weight values being added to places in the same area as the
user, or in areas with large transition probabilities. Ashbrook and Starner
also use first-order Markov models [Ashbrook, 2002]. They imagine early-
reminder applications and solutions to the common problem of scheduling a
meeting for several people as potential use cases for anticipating where users
will go to and when they will do so.

7.3 Location Sensing Technologies

Section 2.4 outlined the common location sensing technologies available for
today’s mobile devices. Crumblr’s visit recognition algorithm is highly tai-
lored to the GPS technology; therein lies it main weakness as well. By
incorporating other technologies for estimating a device’s location, such as
Bluetooth or WiFi localization approaches based on trilateration, the accu-
racy of the approach could be improved. Especially in cases where the GPS
signal reception is very weak or not available at all, such complementary
technologies might provide a valuable additional source of location informa-
tion.

7.4 Data Management and Reliability

Crumblr’s place visit recognition approach does not allow the user to man-
ually specify visits that were not recognized by the system (false negatives).
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Furthermore, the system does not allow users to remove places or route seg-
ments. For example, when a restaurant goes out of business, it makes no
sense to further consider it for recommendation. Single contributions (place
visits and GPS tracks) currently also cannot be removed from the aggre-
gated database state. The system should be protected against single mali-
cious users trying to disrupt the whole database. Wikipedia, for example,
stores the whole editing history for each wiki page, allowing roll-backs to
previous states carried out by other users. Further research is required in
order to effectively translate such approaches to systems dealing with spatial
data, such as Crumblr. For example, route segments with a high number of
(unique user) submissions can most likely be relied upon. A user ranking
system could also be employed, so that submitters of erroneous data can be
penalized.

7.5 External Services and Data Interoper-

ability

Crumblr currently only uses its own internal repository for storing and re-
trieving content. The possibilities of incorporating external content could
provide additional benefit to the user. For example, by considering data
about opening times of restaurants, meaningless recommendations could be
avoided. Moreover, by including semantic descriptions of the landscape such
as water bodies and non-passable areas, the process of aggregating GPS
tracks could be supported in a meaningful way (see also section 6.5.2).

The option to import data from related systems such as Qype (for places)
or TrailGuru (for routes) could also prove beneficial regarding cold start prob-
lems. Conceptual compatibilities must be evaluated first, as well as poten-
tial costs and license issues. Crumblr’s spatial database of aggregated place
shapes and routes might also prove beneficial for other information systems
relying on such content. An example for an open-source project that might
be a good candidate for data exchange with Crumblr is OpenStreetMap1,
which aims at providing completely free geographic data such as street maps
and places of interest.

Crumblr’s server offers an open interface based on standardized technolo-
gies. However, to truly enable service and data interoperability, standards
regarding protocols, interfaces, and messages are needed. The Open Geospa-
tial Consortium (OGC)2 is an increasingly growing international industry

1http://wiki.openstreetmap.org
2http://opengeospatial.org
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consortium of leading companies, government agencies, and universities try-
ing to make complex spatial information accessible to all kinds of applications
by defining necessary standards.

New users currently must create a new account in order to use Crumblr.
However, this might require too much effort for people who just want to
have a look at the application. This issue could also be solved by enabling
service interoperability. A technology for cross-site authentication recently
gaining momentum is OpenID3. By employing OpenID, users can immedi-
ately start using Crumblr by providing their OpenID credentials obtained
from a trusted OpenID provider. On the server side, Crumblr can be inte-
grated in the OpenID infrastructure via a dedicated OpenID plugin for the
Grails framework.

7.6 Closer Integration with Captchr

Several integration scenarios are imaginable when discussing the relation be-
tween Crumblr and Captchr. Currently, Käppler’s Captchr system utilizes
explicitly captured visits and user ratings (on a 1–5 scale) about places when
building user profiles. In order to further integrate the two systems, a hybrid
approach could include Captchr’s explicit ratings to augment the inferred
preferences. Moreover, Captchr’s user profiles might be extended to include
route visits captured by Crumblr, adding another component to the user
profile model.

In Flickr, annotation (as textual tags) serves both personal and social
purposes, which in turn increase the incentives for tagging and result in a
relatively high number of annotations [Ames and Naaman, 2007]. Similarly,
Captchr allows users to tag their blog entries. Tagging uploaded GPS routes
might be a promising idea for Crumblr, improving the system’s overall effec-
tiveness and offering additional functionality.

Another point of integration could be Captchr’s process of capturing mi-
croblog entries. Before submitting a new blog entry in Captchr, in most cases
the user must first select a place as the current location from a map-based
view. To further ease this process, Captchr could benefit from Crumblr’s
approach to associate visits to places. Specifically, Crumblr could first per-
form the place recognition algorithm on recently captured GPS data and
recommend the most likely place for the current location.

Finally, when explaining the “general similarity” rating for places, Crum-
blr could forward users to Captchr’s website responsible for more compre-
hensively explaining the “general similarity” between two users.

3http://openid.net
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7.7 User Interface Issues

Section 6.6.3 demonstrated Crumblr’s layered visualization approach to make
the recommendation models more transparent to the user. As a possible im-
provement, users could be given the choice to aggregate the individual com-
ponents into one “global” rating. In order to retain a certain level of trans-
parency, the aggregation should be made transparent as well. This could be
achieved by providing graphical interface elements to control the calculation
of the global rating, for example. Each component of the recommendation
model could be associated with a “slider”, which expresses the weight given
to the component. This way, users might easily combine the individual cri-
teria when asking for personalized recommendations without giving up the
transparency of the recommendation process. However, the aggregation of in-
dividual components requires different explanation techniques, which would
have to be explored first.

In spite of Crumblr’s aim at reducing the information overload, the small
screen size makes it extremely challenging to optimize the visualization of
recommended items. In its current version, Crumblr will display all items
that fall within the specified radius of interest and are considered suitable
for the given activity. If a threshold was added in the recommendation pro-
cess, only the items with a rating value greater than the threshold would
be displayed. However, if the items were not uniformly distributed over the
screen, the image might still appear cluttered. Finding ways to visualize
icons in an easy-to-understand uncluttered fashion while satisfying various
users’ requirements is a challenging task. Two fundamental tasks arise from
this issue: the design of icons or the encoding of values with icons, and the
problem of how to properly place icons on maps. A feasible solution might
be the design of “aggregator icons” to indicate clusters of individual overlap-
ping icons. It is also possible to indicate the number of aggregated icons by
slightly increasing the size of aggregators. A survey of visualization strate-
gies addressing the problem of overlapping icons can be found in [Buriget
and Chittaro, 2008].

7.8 Privacy

Additional levels of sharing may prove useful. In some applications users are
able to share private locations while excluding them from public view. Each
level of added sharing, however, adds complexity to the interface, and thus
more research is needed to identify ways to maintain ease of use.
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7.9 Machine Learning Approaches

When machine learning algorithms have been applied to the analysis of peo-
ple’s spatial behavior, they have focused on people’s transitions between
places. For example, Liao et al. utilized relational Markov networks (RMN)
to learn both high level human activities and significant places [Liao et al.,
2005]. CitySense analyzes people’s movement patterns to infer groups of
similar places. In order to create a network of movement between locations,
CitySense’s algorithm first needs to identify and isolate the top N nightlife
places in the city. Thus, machine learning algorithms address a rather higher-
level problem than clustering algorithms do. The two approaches might be
considered as complementary: the results of a visit recognition algorithm,
which captures the characteristics of places and estimates activities, can serve
as suitable input (activity and place candidates) for machine learning algo-
rithms.
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Conclusion

This thesis presented an overview of the recent trends and developments in
the Web and the mobile computing sphere. Since the turn of the millen-
nium, the rising popularity of applications and services such as blogs, video
sharing, and social networking platforms has changed the way we interact
and network. Web 2.0 applications act as platforms creating collaborative,
community-based sites, where users provide and organize the content.

A trend in the mobile computing world gains momentum and further pro-
motes the vibrancy of platforms and services relying on user contributions –
the wide-spread proliferation of open mobile platforms and devices. As the
modern life style becomes faster and faster, people are in need of tools and
technologies that assist them in the organization of their daily lives. Peo-
ple’s everyday activities are related to the physical environment determined
by space and time in two ways. On the one hand, by engaging in everyday
activities, people develop personal preferences about places and routes they
visit and a sense about the distinctions between them. On the other hand,
observed patterns in people’s spatial behavior can be used to characterize
the visited places and routes. Personal preferences and spatial character-
istics of places and routes can be captured via modern mobile technology
and location-based services in a non-obtrusive way. Mobile recommendation
systems utilizing observed spatial behavior can help users to find places and
routes matching their interests and current situation.

Positioned in the converging field between the Web 2.0 paradigms and
current mobile computing trends, this thesis proposed Crumblr, a novel ap-
proach to personalized recommendations of shared spatial content. In order
to achieve this goal, three steps were identified: user observation, aggregation
of spatial and contextual data, and personalized filtering and recommenda-
tion of spatial data. The following paragraphs provide a brief summary of
the main contributions developed in this thesis.
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Visit Recognition

This thesis developed a novel semi-automatic approach to acquire user pref-
erences about places and routes, trying to achieve a good balance between
unobtrusive automation and reliable user interaction methods. Crumblr’s
visit recognition algorithm was constructed by building on existing work on
extracting place visits from GPS traces. Several suggestions were developed
in order to effectively deal with noisy and sparse GPS data. Furthermore,
custom extensions are proposed to improve the detection of false positives,
i.e. urban canyons. Besides recognizing the visited places, Crumblr also aims
at estimating the performed activities, based on aggregated history data.

Addressing both personal and social motivations for sharing location in-
formation, the visit recognition approach also accounts for the privacy issues
inherent in systems relying on users’ location data. By giving users control
over their data, the system’s acceptance is further promoted.

Route Aggregation

Existing work on route aggregation methods from [Morris et al., 2004] has
been analyzed and several extensions have been suggested. Related sys-
tems aiming at constructing a route library do not utilize personalization
techniques in order to further optimize the information flow when providing
route information to users. By incorporating a layer of contextual data, i.e.
the users’ identities and the performed activities, Crumblr’s route network is
made suitable to personalized recommendations.

Modeling Places

Existing systems dealing with places employ a rather simplistic place model,
describing places as single points in space. By offering a more accurate place
model in form of geographic regions, Crumblr is able to improve both its
visit recognition approach and the spatial assistance to users on the move.
An approach to collaboratively update the place shapes has been designed
and discussed as well.

Personalized Recommendations

By analyzing the collected place and route visits, user preferences can be
implicitly constructed. The user’s preferences and current situation can be
used in order to personalize the retrieval of the aggregated spatial content.
Several personalized recommendation models have been developed for this
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purpose. Among the employed recommendation methods are user-based col-
laborative filtering techniques, several statistics-based methods, and a novel
combination of places and routes. By capturing the subsequent place and
route visits, the system closes its implicit feedback loop.

Explanations

Specific visualization and explanation techniques have been proposed in order
to further drive the system’s usability and acceptance. The suggested expla-
nation approaches were derived from the employed recommendation models
– by presenting the most important aspects of the utilized recommendation
approach, the system’s believability and trustworthiness is promoted. In par-
ticular, the demonstrated user-centered explanations also foster interactions
between users, going beyond pure spatial assistance. Finally, Crumblr’s user
interface has been developed with the previously identified usability consid-
erations for mobile devices in mind.

Working Prototype

In order to demonstrate the developed ideas, a proof-of-concept prototype has
been developed for the Google Android mobile platform using open-source
software solutions. A comprehensive “Admin Interface” has been developed
and deployed on an application server for test purposes as well.

Evaluation

Even though the discussion of Crumblr’s algorithms included simulated tests
and user stories, the proposed ideas still lack practical evaluation to prove
their effectiveness. This project’s resource constraints prohibited a necessary
large-scale quantitative or qualitative evaluation of the Crumblr system. Nev-
ertheless, once Android devices are available, an actual user study could be
performed. Some first thoughts on how this evaluation could be performed
is given next.

Considering user observation, the effectiveness of the proposed visit recog-
nition algorithm should be measured. Two metrics from information retrieval
can be used for this purpose – precision and recall. Precision refers to the
number of correctly recognized place visits divided by the total number of
place visits recognized by Crumblr. Recall indicates what percentage of users’
place visits were successfully recognized by Crumblr. The semi-automatic
approach to sharing place information (i.e. associating visits to places and
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estimating activities) can only be evaluated by performing a large-scale user
study with a subsequent series of structured interviews.

The effectiveness of data aggregation methods (updating place shapes and
aggregating GPS tracks) needs to be qualitatively investigated by collecting
large amounts of GPS data.

In [Herlocker et al., 2004], Herlocker et al. concluded that evaluating
recommendation systems and making the results comparable to related work
is inherently difficult for several reasons. First, different algorithms may be
better or worse on different data sets. Many collaborative filtering algorithms
have been designed specifically for data sets in which there are many more
users than items, and vice versa. The second reason that evaluation is diffi-
cult is that the goals for which an evaluation is performed may differ. Most
of the early evaluation work focused specifically on the “accuracy” of collab-
orative filtering algorithms in “predicting” withheld ratings. However, even
early researchers recognized that when recommendations are used to support
decisions, it can be more valuable to measure how often the system leads its
users to wrong choices. A few researchers have argued that these issues are
all details, and that the bottom-line measure of a recommendation system’s
success should be user satisfaction [Herlocker et al., 2004]. Again, this phe-
nomenon can only be investigated in a user study when Android handhelds
become available.
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Appendix A

Place Visit Recognition

Appendix A describes a selection of fictive test cases used to get prelimi-
nary results of Crumblr’s place visit recognition algorithm. The algorithm
has been deployed on the Crumblr server for testing purposes and made ac-
cessible via the Admin Interface. The following scenarios are depicted with
satellite photos obtained from Google Maps. A fictive user Alice is assumed
to have carried around a Google Android based device with the Crumblr
client installed and running. Alice’s GPS position data is shown in form of
solid white and yellow rectangles. The white rectangles represent data that
was ignored by Crumblr’s visit recognition algorithm, whereas the yellow
rectangles belong to the recognized place visits. To visually distinguish clus-
ters, each clustered point has its cluster ID displayed in its yellow rectangle.

Figure A.1: The image shows Alice’s path to the tennis courts, where she
spent some time. Finally, she moved away from the courts. Crumblr correctly
recognizes the visit to the tennis court.
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Figure A.2: This image shows Alice’s path from the city to the beach. Before
going to the beach, she stops by her friend’s house (“cluster” 0). Since the
constraints from Definition 6.1.4 are fulfilled, Crumblr correctly detects this
as a place visit. Finally, the beach visit is detected as well (cluster 1).

Figure A.3: This image shows a scenario where the algorithm fails to de-
tect a visit to an indoor place (red circle). The constraints from Definition
6.1.4 are not fulfilled, because Alice produced two very close GPS readings
before entering the house (e.g. she took a call before going in). This led to
the extrapolation of a too small perimeter, causing Crumblr to interpret the
subsequent loss of signal as an urban canyon. Instead of considering only the
last two points before losing signal, a possible improvement would consider
the last k > 2 points, and extrapolate the speed by employing a weighting
method over the last k − 1 steps.
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Figure A.4: This image shows Alice driving in New York/New Jersey. By
driving through the Lincoln Tunnel (under the Hudson River), her phone’s
GPS signal gets lost. On the other side of the river, the position data is col-
lected normally again. The constraints from Definition 6.1.4 are not fulfilled,
because Alice was constantly moving. This caused Crumblr to correctly ig-
nore the loss of signal.

Figure A.5: This image shows Alice’s movement history in a part of New
York. The two yellow circles represent two visits to the same place. Crumblr
recognizes these clusters based on Def. 6.1.1 and merges them according to
Kang et al.’s merging condition.
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Figure A.6: This image shows another example of Alice’s movement history.
The two yellow polygons represent two visits to two different places. Crumblr
recognizes these clusters based on Def. 6.1.1 and does not merge them, since
they do not fulfill Kang et al.’s merging condition.
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Appendix B

Updating Place Shapes

PlaceShape

Visit

PlaceShape
new

Figure B.1: Two overlapping rectangles are merged to a polygon. The re-
sulting shape PlaceShapenew expresses both positive growth in the vertical
direction and negative growth in the horizontal direction.

PlaceShape

Visit

PlaceShape
new

Figure B.2: Two overlapping triangles are merged to a polygon. The result-
ing shape PlaceShapenew accounts for both positive and negative growth.
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Appendix C

Admin Interface

Figure C.1: The Admin Interface: creating GPS route tracks for user Alice
and activity “Jogging”
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Figure C.2: The Admin Interface: adding a place visit for user “Bobby”,
activity “Clubbing”, and place “Cafe 101” (London, UK)

Figure C.3: The Admin Interface: places created in Kaiserslautern
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